Preview

Experimental and Clinical Gastroenterology

Advanced search

Changes in the intestinal microbiome and disturbances in intestinal structure in rats with different severity of experimental allergic encephalomyelitis

https://doi.org/10.31146/1682-8658-ecg-239-7-162-181

Abstract

Multiple sclerosis (MS) is a chronic autoimmune disorder of the central nervous system, characterized by inflammatory demyelination and neurodegeneration. Increasing attention has been directed to the “microbiota-gut-brain” axis, as intestinal barrier dysfunction and alterations in gut microbiota composition have been reported to precede the clinical onset of MS, although their association with disease severity remains uncertain. Experimental autoimmune encephalomyelitis (EAE) in rodents is a well-established model that reproduces the key immunological and morphological features of MS. However, comparative investigations addressing both the taxonomic structure of the microbiota and intestinal morphological changes across different severities of EAE remain scarce. To compare the taxonomic composition of the gut microbiota and structural alterations of the intestinal epithelium in rats with different severities of experimental autoimmune encephalomyelitis (EAE). The study was conducted on 39 female Wistar rats (intact, n=9; EAE-induced, n=30). EAE was induced by a single subcutaneous injection of spinal cord homogenate in complete Freund’s adjuvant. Morphological and ultrastructural changes in the intestinal epithelium were assessed using histological techniques and electron microscopy. The taxonomic composition of the gut microbiota was analyzed by 16S rRNA gene sequencing. When comparing the intestinal microbiome of mildly and severely ill rats, significant differences were observed in the representation of 4 phyla: Bacillota, Bacteroidota, Actinomycetota and Cyanobacteriota. In the baseline microbiome of severely affected rats, the abundance of the class Epsilonproteobacteria (Pseudomonadota) was increased. Clinical symptoms developed in both groups against the background of a decreased number of Bacteroidota (family Prevotellaceae). During the recovery phase, the abundance of Bacteroidota was restored only in mildly affected and recovered animals, whereas in rats with severe EAE the proportion of Actinomycetota increased. At the genus level, distinct group-specific dynamics during EAE were identified for 9 genera (unclassified Clostridiaceae and Peptoscreptococaceae, Allobaculum, Turicibacter, Prevotella, Parabacteroides, Desulfovibrio and Bifidobacterium). Alongside more pronounced alterations in the gut microbiome, rats with severe EAE displayed significant morphological changes in the intestine. At the peak of the disease, leukocyte infiltration of the mucosa, reduction in goblet cells numbers, shortened and thickened small intestinal villi and decreased crypt depth in the colon were observed, all correlating with the severity of the disease. Ultrastructural analysis further revealed mitochondrial and microvilli damage in enterocytes and colonocytes, which was more pronounced in severely affected animals. These findings support the involvement of the “microbiota-gut-brain” axis in the development of autoimmune demyelinating CNS disorders. The observed association between intestinal morphological alterations, gut microbiota composition, and EAE severity highlights the potential of targeting intestinal inflammation and barrier function for therapeutic strategies in multiple sclerosis

About the Authors

V. V. Bynzar
Institute of Experimental Medicine
Russian Federation


A. V. Matsulevich
Institute of Experimental Medicine
Russian Federation


N. M. Grefner
Institute of Experimental Medicine
Russian Federation


N. S. Novikova
Institute of Experimental Medicine
Russian Federation


I. N. Abdurasulova
Institute of Experimental Medicine
Russian Federation


References

1. Lassmann H. Multiple Sclerosis Pathology. Cold Spring Harb Perspect Med. 2018 Mar 1;8(3): a028936. doi: 10.1101/cshperspect.a028936.

2. Abdurasulova I.N., Klimenko V.M. The role of immune and glial cells in neurodegenerative processes. Medical Academic Journal. 2011;11(1):12-29. (In Russ.) doi: 10.17816/MAJ11112-29.@@ Абдурасулова И.Н., Клименко В.М. Роль иммунных и глиальных клеток в процессах нейродегенерации. Медицинский академический журнал. 2011;11(1):12-29. doi: 10.17816/MAJ11112-29.

3. Berer K., Krishnamoorthy G. Microbial view of central nervous system autoimmunity. FEBS Lett. 2014 Nov 17;588(22):4207-13. doi: 10.1016/j.febslet.2014.04.007.

4. Parodi B, Kerlero de Rosbo N. The Gut-Brain Axis in Multiple Sclerosis. Is Its Dysfunction a Pathological Trigger or a Consequence of the Disease? Front Immunol. 2021 Sep 21;12:718220. doi: 10.3389/fimmu.2021.718220.

5. Abdurasulova IN (2024). Role of the intestinal microbiota in the pathogenesis of multiple sclerosis. Part 3. Gut microbiota as a potential trigger for multiple sclerosis. Medical Academic Journal. 2024;24(3):5-44. (In Russ.) doi: 10.17816/MAJ633511.@@ Абдурасулова И.Н. Роль микробиоты кишечника в патогенезе рассеянного склероза. Часть 3. Кишечная микробиота как триггер и фактор прогрессирования рассеянного склероза. Медицинский академический журнал. 2024;24(3):5-44. doi: 10.17816/MAJ633511.

6. Hooper L.V., Wong M.H., Thelin A., Hansson L., Falk P.G., Gordon J.I. Molecular analysis of commensal host-microbial relationships in the intestine. Science. 2001;291(5505):881-884. doi: 10.1126/science.291.5505.881.

7. Neish A.S. Microbes in gastrointestinal health and disease. Gastroenterology. 2009;136(1):65-80. doi: 10.1053/j.gastro.2008.10.080.

8. Backhed F., Ley R.E., Sonnenburg J.L., Peterson D.A., Gordon J.I. Host-bacterial mutualism in the human intestine. Science. 2005;307(5717):1915-1920. doi: 10.1126/science.1104816.

9. Lloyd-Price J., Abu-Ali G., Huttenhower C. The healthy human microbiome. Genome Medicine. 2016;8(1):51. doi: 10.1186/s13073-016-0307-y.

10. Xavier R.J., Podolsky D.K. Unravelling the pathogenesis of inflammatory bowel disease. Nature. 2007;448(7152):427-434. doi: 10.1038/nature06005.nature06005.

11. Morgan X.C., Tickle T.L., Sokol H. et al. Dysfunction of the intestinal microbiome in inflammatory bowel disease and treatment. Genome Biol. 2012;13(9): R79. doi: 10.1186/gb-2012-13-9-r79.

12. Hall A.B., Tolonen A.C., Xavier R.J. Human genetic variation and the gut microbiome in disease. Nature Reviews Genetics. 2017;18(11):690-699. doi: 10.1038/nrg.2017.63.

13. Farkas A.E., Nusrat A. Pharmacological targeting of the inflamed intestinal barrier. Current Pharmaceutical Design. 2016;22(35):5400-5414. doi: 10.2174/1381612822666160726123857.

14. Buscarinu M.C., Cerasoli B., Annibali V. et al. Altered intestinal permeability in patients with relapsing-remitting multiple sclerosis: A pilot study. Multiple sclerosis. 2017;23(3):442-446. doi: 10.1177/1352458516652498.

15. Spear E.T., Holt E.A., Joyce E.J. et al. Altered gastrointestinal motility involving autoantibodies in the experimental autoimmune encephalomyelitis model of multiple sclerosis. Neurogastroenterology and Motility. 2018;30(9): Article e13349. doi: 10.1111/nmo.13349.

16. Levinthal D.J., Rahman A., Nusrat S., O’Leary M., Heyman R., Bielefeldt K. Adding to the burden: gastrointestinal symptoms and syndromes in multiple sclerosis. Multiple sclerosis international. 2013:319201. doi: 10.1155/2013/319201.

17. Abdurasulova, I.N., Tarasova E.A., Ermolenko E.I. et al. Multiple sclerosis is associated with altered quantitative and qualitative composition of intestinal microbiota. Medical academic journal. 2015;15(3):55-67. (InRuss.) doi: 10.17816/MAJ15355-67.@@ Абдурасулова И.Н., Тарасова Е.А., Ермоленко Е.И. и др. При рассеянном склерозе изменяется качественный и количественный состав микробиоты кишечника. Медицинский академический журнал. 2015;15(3):55-67.

18. Marrie R.A., Cohen J., Stuve O. et al. A systematic review of the incidence and prevalence of comorbidity in multiple sclerosis: overview. Multiple sclerosis. 2015;21(3):263-281. doi: 10.1177/1352458514564491

19. Yaqubi K., Kostev K., Klein I. et al. Inflammatory bowel disease is associated with an increase in the incidence of multiple sclerosis: a retrospective cohort study of 24,934 patients. European journal of medical research. 2024;29(1):186. doi: 10.1186/s40001-024-01776-w.

20. Kosmidou M., Katsanos A.H., Katsanos K.H. et al. Multiple sclerosis and inflammatory bowel diseases: a systematic review and meta-analysis. Journal of neurology. 2017;264(2):254-259. doi: 10.1007/s00415-016-8340-8.

21. Chen J., Chia N., Kalari K.R. et al. (2016) Multiple sclerosis patients have a distinct gut microbiota compared to healthy controls. Scientific Reports. 2016;6:28484. doi: 10.1038/srep28484.

22. Shah S., Locca A., Dorsett Y. et al. Alterations of the gut mycobiome in patients with MS. EBioMedicine. 2021;71:103557. doi: 10.1016/j.ebiom.2021.103557.

23. Blanco N., Huang A., Lim D., Fortier A.T., Yong C. The disease course of multiple sclerosis may be modulated by the gut microbiome. Undergraduate Journal of Experimental Microbiology and Immunology. 2015;30:1-14.

24. Reynders T., Devolder L., Valles-Colomer M. et al. Gut microbiome variation is associated to Multiple Sclerosis phenotypic subtypes. Annals of Clinical and Translational Neurology. 2020;(4):406-419. doi: 10.1002/acn3.51004.

25. Cox L.M., Maghzi A.H., Liu S. et al. Gut microbiome in progressive multiple sclerosis. Annals of Neurology. 2021;89(6):1195-1211. doi: 10.1002/ana.26084.

26. Abdurasulova I.N., Chernyavskaya E.A., Ivanov A.B. et al. Changes in gut microbiome taxonomic composition and еheir relationship to biosynthetic and metabolic pathways of B vitamins in children with multiple sclerosis. Journal of Evolutionary Biochemistry and Physiology. 2024;60(1):114-135. doi: 10.1134/S0022093024010095.

27. Stromnes I.M., Goverman J.M. (2006) Active induction of experimental allergic encephalomyelitis. Nature protocols. 2006;1(4):1810-1819. doi: 10.1038/nprot.2006.285.

28. Ben-Nun A., Kaushansky N., Kawakami N. et al. From classic to spontaneous and humanized models of multiple sclerosis: impact on understanding pathogenesis and drug development. Journal of autoimmunity. 2014;54:33-50. doi: 10.1016/j.jaut.2014.06.004.

29. Gold R., Linington C., Lassmann H. Understanding pathogenesis and therapy of multiple sclerosis via animal models: 70 years of merits and culprits in experimental autoimmune encephalomyelitis research. Brain: a journal of neurology. 2006;129(Pt 8):1953-1971. doi: 10.1093/brain/awl075.

30. Procaccini C., De Rosa V., Pucino V., Formisano L., Matarese G. Animal models of Multiple Sclerosis. European journal of pharmacology. 2015;759:182-191. doi: 10.1016/j.ejphar.2015.03.042.

31. Constantinescu C.S., Farooqi N., O’Brien K., Gran B. Experimental autoimmune encephalomyelitis (EAE) as a model for multiple sclerosis (MS). British journal of pharmacology. 2011;164(4):1079-1106. doi: 10.1111/j.1476-5381.2011.01302.x.

32. Vainchtein I.D., Vinet J., Brouwer N. et al. In acute experimental autoimmune encephalomyelitis, infiltrating macrophages are immune activated, whereas microglia remain immune suppressed. Glia. 2014;62(10):1724-1735. doi: 10.1002/glia.22711.

33. Nouri M., Weström B., Lavasani S. Elevated fecal calprotectin accompanied by intestinal neutrophil infiltration and goblet cell hyperplasia in a murine model of multiple sclerosis.International journal of molecular sciences. 2023;24(20):15367. doi: 10.3390/ijms242015367.

34. Davidson M.G., Alonso M.N., Yuan R. et al. Th17 cells induce Th1-polarizing monocyte-derived dendritic cells. Journal of immunology. 2013;191(3):1175-1187. doi: 10.4049/jimmunol.1203201.

35. Secher T., Kassem S., Benamar M. et al. Oral Administration of the Probiotic Strain Escherichia coli Nissle 1917 Reduces susceptibility to neuroinflammation and repairs experimental autoimmune encephalomyelitis-induced intestinal barrier dysfunction. Frontiers in immunology. 2017;8:1096. doi: 10.3389/fimmu.2017.01096.

36. Lin C.C., Edelson B.T. New insights into the role of IL-1β in experimental autoimmune encephalomyelitis and multiple sclerosis. Journal of immunology. 2017;198(12):4553-4560. doi: 10.4049/jimmunol.1700263.

37. Jang D.I., Lee A.H., Shin H.Y. et al. The role of tumor necrosis factor alpha (TNF-α) in autoimmune disease and current TNF-α inhibitors in therapeutics.International journal of molecular sciences. 2021;22(5)2719. doi: 10.3390/ijms22052719.

38. Alonso A., Hernán M.A. Temporal trends in the incidence of multiple sclerosis: a systematic review. Neurology. 2008;71(2):129-135. doi: 10.1212/01.wnl.0000316802.35974.34.

39. Zeydan B., Atkinson E.J., Weis D.M. et al. Reproductive history and progressive multiple sclerosis risk in women. Brain communications. 2020;2(2): fcaa185. doi: 10.1093/braincomms/fcaa185.

40. Abdurasulova I.N., Ermolenko E.I., Matsulevich A.V. et al. Effects of probiotic Enterococci and Glatiramer Acetate on the severity of experimental allergic encephalomyelitis in rats. Journal of Neuroscience and Behavior Physiology. 2017;47(7):866-876. doi: 10.1007/s11055-017-0484-1.

41. Gilerovich E.G., Fedorova E.A., Abdurasulova I.N. et al. Analysis of the morphological signs of an inflammatory reaction in the spinal cord of Wistar rats in an experimental model. Journal of Neuroscience and Behavioral Physiology. 2012;42(1):43-47. doi: 10.1007/s11055-011-9530-6.

42. Bates S.T., Berg-Lyons D., Caporaso J.G., Walters W.A., Knight R., Fierer N. Examining the global distribution of dominant archaeal populations in soil. The ISME Journal. 2011;5(5):908-917. doi: 10.1038/ismej.2010.171.

43. Bolger A.M., Lohse M., Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30(15):2114-2120. doi: 10.1093/bioinformatics/btu170.

44. Caporaso J.G., Kuczynski J., Stombaugh J. et al. QIIME allows analysis of high-throughput community sequencing data. Nature Methods. 2010;7(5):335-336. doi: 10.1038/nmeth.f.303.

45. Korzhevsky D.E., Gilerovich E.G., Kirik O.V., Sukhorukova E.G., Grigoriev I.P. Morphological diagnostics: preparation of material for morphological study and electron microscopy. SPb.: Publishing house “SPETSLIT”. 2013. (In Russ.)@@ Коржевский Д.Э., Гилерович Е.Г., Кирик О.В., Сухорукова Е.Г., Григорьев И.П. Морфологическая диагностика: подготовка материала для морфологического исследования и электронной микроскопии. СПб.: Издательство «СПЕЦЛИТ». 2013.

46. Hajibagheri M.A. Preparation of double/single-stranded DNA and RNA molecules for electron microscopy. Methods Mol Biol. 1999;117: 209-227. doi: 10.1385/1-59259-201-5:209.

47. Abdurasulova I.N., Zhitnukhin Y.L., Tarasova E.A., Klimenko V.M. Expression of cytokine mRNA in the spleen and spinal cord of rats with different severity of EAE. Journal of Medical Immunology. 2004;6(1-2):37-46. (In Russ.)@@ Абдурасулова И.Н., Житнухин Ю.Л., Тарасова Е.А., Клименко В.М. Экспрессия мРНК цитокинов в селезенке и спинном мозге крыс с различной тяжестью ЭАЭ. Журнал Медицинская Иммунология. 2004;6(1-2):37-46.

48. Zhitnukhin Yu.L., Abdurasulova I.N., Tarasova E.A., Sokolov D.I., Novikova T.A. Dynamics of circulating and expressed cytokines upon induction of experimental allergic encephalomyelitis. Medical Immunology. 2008;10(2-3):193-202. (in Russ.) doi: 10.15789/1563-0625-2008-2-3-193-202.@@ Житнухин Ю.Л., Абдурасулова И.Н., Тарасова Е.А., Соколов Д.И., Новикова Т.А. Особенности динамики циркулирующих и экспрессируемых цитокинов при индукции экспериментального аллергического энцефаломиелита. Журнал Медицинская иммунология. 2008;2-3:193-202. doi: 10.15789/1563-0625-2008-2-3-193-202.

49. Pozdnyakov A.V., Abdurasulova I.N., Prakhova L.N. Proton magnetic resonance spectroscopy in the study of metabolic mechanisms of the demyelinating process in experimental allergic encephalitis. Journal of Radiation Diagnostics and Therapy. 2010;2(1):30-36. (In Russ.)@@ Поздняков А.В., Абдурасулова И.Н., Прахова Л.Н. Протонная магнитно-резонансная спектроскопия в изучении метаболических механизмов демиелинизирующего процесса при экспериментальном аллергическом энцефалите. Журнал Лучевая диагностика и терапия 2(1):30-36.

50. Abdurasulova I.N., Tarasova E.A., Matsulevich A.V. et al. Changes in the qualitative and quantitative composition of the intestinal microflora in rats in experimental allergic encephalomyelitis. Journal of Neuroscience and Behavioral Physiology. 2017;47(3): 328-336. doi: 10.1007/s11055-017-0401-7.

51. Altieri C., Speranza B., Corbo M.R., Sinigaglia M., Bevilacqua A. Gut-microbiota, and multiple sclerosis: background, evidence, and perspectives. Nutrients. 2023;15(4):942. doi: 10.3390/nu15040942.

52. Saresella M., Marventano I., Barone M. et al. Alterations in circulating fatty acid are associated with gut microbiota dysbiosis and inflammation in multiple sclerosis. Frontiers in Immunology. 2020;11:1390. doi: 10.3389/fimmu.2020.01390.

53. Shahi S.K., Freedman S.N., Murra A.C. et al. Prevotella histicola, a human gut commensal, is as potent as COPAXONE in an animal model of multiple sclerosis. Frontiers in Immunology. 2019;10:462. doi: 10.3389/fimmu.2019.00462.

54. Mangalam A., Shahi S.K., Luckey D. et al. Human gut-derived commensal bacteria suppress CNS inflammatory and demyelinating disease. Cell Reports. 2017;20(6):1269-1277. doi: 10.1016/j.celrep.2017.07.031.

55. Jiraskova Zakostelska Z., Kraus M., Coufal S. et al. Lysate of Parabacteroides distasonis prevents severe forms of experimental autoimmune encephalomyelitis by modulating the priming of T cell response. Frontiers in Immunology. 2024;15:1475126. doi: 10.3389/fimmu.2024.1475126

56. Arumugam M., Raes J., Pelletier E. et al. Enterotypes of the human gut microbiome. Nature. 2011;473(7346):174-180. doi: 10.1038/nature09944.

57. Wright D.P., Rosendale D.I., Robertson A.M. Prevotella enzymes involved in mucin oligosaccharide degradation and evidence for a small operon of genes expressed during growth on mucin. FEMS Microbiology Letters. 2000;190(1):73-79. doi: 10.1111/j.1574-6968.2000.tb09265.x.

58. Tremlett H., Zhu F., Arnold D. et al. The gut microbiota in pediatric multiple sclerosis and demyelinating syndromes. Annals of Clinical and Translational Neurology. 2021;8(12):2252-2269. doi: 10.1002/acn3.51476.

59. Elgendy S.G., Abd-Elhameed R., Daef E. et al. Gut microbiota in forty cases of egyptian relapsing remitting multiple sclerosis. Iranian Journal of Microbiology. 2021;(5):632-641. doi: 10.18502/ijm.v13i5.7428.

60. Miyauchi E., Kim S.W., Suda W. et al. Gut microorganisms act together to exacerbate inflammation in spinal cords. Nature. 2020 Sep;585(7823):102-106. doi: 10.1038/s41586-020-2634-9.

61. Dinh D.M., Volpe G.E., Duffalo C., Bhalchandra S., Tai A.K., Kane A.V., Wanke C.A., Ward H.D.Intestinal microbiota, microbial translocation, and systemic inflammation in chronic HIV infection. Journal of Infectious Diseases. 2015;211:19-27. doi: 10.1093/infdis/jiu409.

62. Chen L., Wilson J.E., Koenigsknecht M.J. et al. NLRP12 attenuates colon inflammation by maintaining colonic microbial diversity and promoting protective commensal bacterial growth. Nature immunology. 2017;18:541-551. doi: 10.1038/ni.3690.

63. Gharagozloo M., Mahvelati T.M., Imbeault E. et al. The nod-like receptor, Nlrp12, plays an anti-inflammatory role in experimental autoimmune encephalomyelitis. Journal of neuroinflammation. 2015;12:198. doi: 10.1186/s12974-015-0414-5.

64. Lukens J.R., Gurung P., Shaw P.J. et al. The NLRP12 sensor negatively regulates autoinflammatory disease by modulating interleukin-4 production in T Cells. Immunity. 2015;42:654-664. doi: 10.1016/j.immuni.2015.03.006.

65. Moles L., Egimendia A., Osorio-Querejeta I. et al. (2021) Gut microbiota changes in experimental autoimmune encephalomyelitis and cuprizone mice models. ACS Chemical Neuroscience. 2021;12(5): 893-905. doi: 10.1021/acschemneuro.0c00695.

66. Chen H., Ma X., Liu Y. et al. Gut microbiota interventions with Clostridium butyricum and norfloxacin modulate immune response in experimental autoimmune encephalomyelitis mice. Frontiers in Immunology. 2019;10: 1662. doi: 10.3389/fimmu.2019.01662.

67. Yu J., Lyu J., Zhu T., Li Y., Xia H., Liu Q., Li L., Chen B. Oral-gut axis in inflammation: periodontitis exacerbates ulcerative colitis via microbial dysbiosis and barrier disruption. BMC Oral Health. 2025;25:894. doi: 10.1186/s12903-025-06269-8.

68. Gandy K.A.O., Zhang J., Nagarkatti P., Nagarkatti M. The role of gut microbiota in shaping the relapse-remitting and chronic-progressive forms of multiple sclerosis in mouse models. Scientific Reports. 2019;9(1):6923. doi: 10.1038/s41598-019-43356-7.

69. Stanisavljević S., Lukić J., Soković S. et al. Correlation of gut microbiota composition with resistance to experimental autoimmune encephalomyelitis in rats. Frontier in Microbiology. 2016;7:2005. doi: 10.3389/fmicb.2016.02005.

70. Abdurasulova I.N., Matsulevich A.V., Grefner N.M., Negoreeva I.G., Bisaga G.N. Elevated Bifidobacterium levels in the gut microbiota are a marker of adverse clinical course of multiple sclerosis. Journal of Neuropathology and Psychiatry named after S.S. Korsakov. 2023;123(7-2): 136-137. (In Russ.)@@ Абдурасулова И.Н., Мацулевич А.В., Грефнер Н.М., Негореева И.Г., Бисага Г.Н. Повышенный уровень Bifidobacterium в составе кишечной микробиоты - маркер неблагоприятного течения рассеянного склероза. Журнал Неврологии и психиатрии им. С.С. Корсакова. 2023;123(7-2): 136-137.

71. Miyake S., Kim S., Suda W. et al. Dysbiosis in the gut microbiota of patients with multiple sclerosis, with a striking depletion of species belonging to Clostridia XIVa and IV clusters. PLoS ONE. 2015;10(9): e0137429. doi: 10.1371/journal.pone.0137429.

72. Forbes J.D., Chen C.Y., Knox N.C. et al. A comparative study of the gut microbiota in immune-mediated inflammatory diseases-does a common dysbiosis exist? Microbiome. 2018;6(1):221. doi: 10.1186/s40168-018-0603-4.

73. Swidsinski A., Dörffel Y., Loening-Baucke V. et al. Reduced Mass and Diversity of the Colonic Microbiome in Patients with Multiple Sclerosis and Their Improvement with Ketogenic Diet. Frontier in Microbiology. 2017;8:1141. doi: 10.3389/fmicb.2017.01141.

74. Ooi J.H., Li Y., Rogers C.J. Vitamin D regulates the gut microbiome and protects mice from dextran sodium sulfate-induced colitis. Journal of Nutrition. 2013;143(10):1679-1686. doi: 10.3945/jn.113.180794.

75. Matharu K.S., Mizoguchi E., Cotoner C.A. et al. Toll-like receptor 4-mediated regulation of spontaneous Helicobacter-dependent colitis in IL-10-deficient mice. Gastroenterology. 2009;137(4):1380-1390.e1-3. doi: 10.1053/j.gastro.2009.07.004.

76. Nouri M., Bredberg A., Weström B., Lavasani S.Intestinal barrier dysfunction develops at the onset of experimental autoimmune encephalomyelitis, and can be induced by adoptive transfer of auto-reactive T cells. PloS one. 2014;9(9): e106335. doi: 10.1371/journal.pone.0106335.

77. Calderon-Martinez E., Zevallos Delgado C., Ng W.L., Sharma Gautam S., Joseph M. Assessment of the immune cell landscape in inflammatory bowel disease. Inflammatory Bowel Diseases. 2023;29(1): S39-S40. doi: 10.1093/ibd/izac247.072.

78. Wiese J.J., Manna S., Kühl A.A. et al. Myenteric plexus immune cell infiltrations and neurotransmitter expression in Crohn’s disease and ulcerative colitis. Journal of Crohn’s & colitis. 2024;18(1):121-133. doi: 10.1093/ecco-jcc/jjad122.

79. Okayasu I., Hatakeyama S., Yamada M., Ohkusa T., Inagaki Y., Nakaya R. A novel method in the induction of reliable experimental acute and chronic ulcerative colitis in mice. Gastroenterology. 1990;98(3):694-702. doi: 10.1016/0016-5085(90)90290-h.

80. Rijke R.P., van der Meer-Fieggen W., Galjaard H. (1974) Effect of villus length on cell proliferation and migration in small intestinal epithelium. Cell and tissue kinetics. 1974;7(6):577-586. doi: 10.1111/j.1365-2184.1974.tb00441.x.

81. Vyhlidal C.A., Chapron B.D., Ahmed A., Singh V., Casini R., Shakhnovich V. Effect of Crohn’s disease on villous length and CYP3A4 expression in the pediatric small intestine. Clinical and translational science. 2021;14(2):729-736. doi: 10.1111/cts.12938.

82. Yamamoto-Furusho J.K., Mendivil E.J., Fonseca-Camarillo G. Reduced expression of mucin 9 (MUC9) in patients with ulcerative colitis. Inflammatory bowel diseases. 2012;18(3): E601. doi: 10.1002/ibd.21920.

83. Wang Z., Shen J. The role of goblet cells in Crohn’ s disease. Cell & Bioscience. 2024;14(1):43. doi: 10.1186/s13578-024-01220-w.

84. Pothuraju R., Pai P., Chaudhary S. et al. Depletion of transmembrane mucin 4 (Muc4) alters intestinal homeostasis in a genetically engineered mouse model of colorectal cancer. Aging. 2022;14(5):2025-2046. doi: 10.18632/aging.203935.

85. Coletto E., Savva G.M., Latousakis D. et al. (2023) Role of mucin glycosylation in the gut microbiota-brain axis of core 3 O-glycan deficient mice. Sentific reports. 2023;13(1):3982. doi: 10.1038/s41598-023-40497-8.

86. Hinds J.P., Eidelman B.H., Wald A. Prevalence of bowel dysfunction in multiple sclerosis. A population survey. Gastroenterology. 1990;98(6):538-1542. doi: 10.1016/0016-5085(90)91087-m.

87. Camilleri M., Ford A.C., Mawe G.M. et al. Chronic constipation. Nature reviews. Disease primers. 2017;3:17095. doi: 10.1038/nrdp.2017.95.


Review

For citations:


Bynzar V.V., Matsulevich A.V., Grefner N.M., Novikova N.S., Abdurasulova I.N. Changes in the intestinal microbiome and disturbances in intestinal structure in rats with different severity of experimental allergic encephalomyelitis. Experimental and Clinical Gastroenterology. 2025;(7):162-181. (In Russ.) https://doi.org/10.31146/1682-8658-ecg-239-7-162-181

Views: 11

JATS XML


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1682-8658 (Print)