Preview

Experimental and Clinical Gastroenterology

Advanced search

Promising bacteria-producers of biologically active substances for agriculture and food industry

https://doi.org/10.31146/1682-8658-ecg-239-7-117-125

Abstract

Purpose. Study of biotechnological potential of strains of the BIOTROF company collection using whole-genome NGS sequencing. Material and methods. The genome of 6 bacterial strains of the genera Bacillus, Lactobacillus and Streptococcus from the collection of BIOTROF LLC (St. Petersburg) was analyzed. Bioinformatics data analysis included processing in software packages of tools and databases RAST, KEGG Pathway, antiSMASH 6.0, Norine, CAZy, PHASTER, VirulenceFinder and ResFinder. Results. The analysis showed that the studied strains had genes associated with the synthesis of a large number of antimicrobial substances of various natures and spectrums of action, enzymes, vitamins, amino acids, genes of resistance to aggressive environmental factors and other properties that determine the high potential of their application in various industries. The use of strains of the genus Bacillus and Enterococcus may be more preferable for the production of biopreparations for plant growing (stimulation of plant growth and protection, bioremediation) and animal husbandry (regulation of the gastrointestinal microbiome, increased immunity, detoxification, increased availability of nutrients) due to a wider range of genes associated with adaptation, enzymatic activity, antimicrobial protection, synthesis of vitamins and amino acids. Lactobacillus plantarum 600, Bacillus subtilis 111, Bacillus mucilaginosus 159 in the genome have determinants of osmotolerance and synthesis of antimicrobial compounds, which determines their potential as preservatives for feed, and Streptococcus thermophilus L has genes for the synthesis of exopolysaccharides necessary for the production of fermented milk products. The genome of all the studied strains did not contain elements that contribute to the formation of toxic and virulent properties of the strains. Conclusion. The studied strains have been shown to have high potential for use in crop production, livestock farming and the food industry.

About the Authors

D. G. Tyurina
Limited Liability Company “BIOTROF+”
Russian Federation


G. Yu. Laptev
Limited Liability Company “BIOTROF+”
Russian Federation


N. I. Novikova
Limited Liability Company “BIOTROF+”
Russian Federation


L. A. Ilina
Limited Liability Company “BIOTROF+”
Russian Federation


V. A. Filippova
Limited Liability Company “BIOTROF+”
Russian Federation


E. A. Yildirym
Limited Liability Company “BIOTROF+”
Russian Federation


E. S. Ponomareva
Limited Liability Company “BIOTROF+”
Russian Federation


E. A. Brazhnik
Limited Liability Company “BIOTROF+”
Russian Federation


V. A. Zaikin
Limited Liability Company “BIOTROF+”
Russian Federation


A. A. Savicheva
Limited Liability Company “BIOTROF+”
Russian Federation


N. S. Patyukova
Limited Liability Company “BIOTROF+”
Russian Federation


References

1. Seo J.K., Kim M., Kim S. Ha Direct-fed Microbials for Ruminant Animals Asian-Aust. J Anim Sci. 2010; 23 (12): 1657-1667. doi: 10.5713/ajas.2010.r.08.

2. Tarakanov B.V., Nikolicheva T.A., Aleshin V.V. Probiotics. Achievements and prospects of use in animal husbandry. Past, present and future of zootechnical science. 2004; 62: 69-73. (in Russ.)@@ Тараканов Б.В., Николичева Т.А., Алешин В.В. Пробиотики. Достижения и перспективы использования в животноводстве. Прошлое, настоящее и будущее зоотехнической науки. 2004;(62):69-73.

3. Tikhonovich I.A. Kozhemyakov A.P., Chebotar V.K. Biopharmaceuticals in agriculture. Methodology and practice of application of microorganisms in plant breeding and fodder production. - M.: Rosselkhozakademiya, 2005. (in Russ.)@@ Тихонович И.А. Кожемяков А.П., Чеботарь В.К. Биопрепараты в сельском хозяйстве. Методология и практика применения микроорганизмов в растениеводстве и кормопроизводстве. - М.: Россельхозакадемия, 2005.

4. Lefevre M., Racedo S.M., Ripert G., Housez B. et al. Probiotic strain Bacillus subtilis CU1 stimulates immune system of elderly during common infectious disease period: a randomized, doubleblind placebo-controlled study. Immun. Ageing. 2015; V.12 (1): 24. doi: 10.1186/s12979-015-0051-y.

5. Kapsea N.G., Engineera A.S., Gowdamana V. et al. Functional annotation of the genome unravels probiotic potential of Bacillus coagulans HS243. Genomics. 2018; 111 (4): 921-929. doi: 10.1016/j.ygeno.2018.05.022.

6. Sulthana A. Lakshmi S.G., Madempudi R.S. Genome Sequencing and Annotation of Bacillus subtilis UBBS-14 to Ensure Probiotic Safety. J. Genomics. 2019; 29 (7):14-17. doi: 10.7150/jgen.31170.

7. Andrews S. FastQC: a quality control tool for high throughput sequence data [Electronic resource]. 2010. http://www.bioinformatics.babraham.ac.uk/projects/fastqc (Accessed: 25.09.2023)

8. Bolger A.M., Lohse M., Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014; 30 (15): 2114-2120. doi: 10.1093/bioinformatics/btu170.

9. Nurk S., Bankevich A., Antipov D. et al. Assembling genomes and mini-metagenomes from highly chimeric reads. Research in Computational Molecular Biology: 17th Annual International Conference. Beijing, China: Springer Berlin Heidelberg. 2013. 7821: 158-170.

10. Aziz R.K., Bartels D., Best A.A., DeJongh M. et al. The RAST Server: rapid annotations using subsystems technology. BMC genomics. 2008. 9 (75): 1-15. doi: 10.1186/1471-2164-9-75.

11. Blin K., Shaw S., Kloosterman A.M., Charlop-Powers Z. et al. antiSMASH 6.0: improving cluster detection and comparison capabilities. Nucleic acids research. 2021; 49 (W1): W29-W35. doi: 10.1093/nar/gkab335.

12. Flissi A., Dufresne Y., Michalik J., Tonon L. Norine, the knowledgebase dedicated to non-ribosomal peptides, is now open to crowdsourcing. Nucleic acids research. 2015; 44 (D1): D1113-D1118. doi: 10.1093/nar/gkv1143.

13. Arndt D., Grant J.R., Marcu A., Sajed T. et al. PHASTER: a better, faster version of the PHAST phage search tool. Nucleic acids research. 2016; 44 9 (W1): W16-W21. doi: 10.1093/nar/gkw387.

14. Kleinheinz K.A., Joensen K.G., Larsen M. Applying the ResFinder and VirulenceFinder web-services for easy identification of acquired antibiotic resistance and E. coli virulence genes in bacteriophage and prophage nucleotide sequences. Bacteriophage. 2014; 4 (2): e27943. doi: 10.4161/bact.27943.

15. Bortolaia V., Kaas R.S., Ruppe E. et al. ResFinder 4.0 for predictions of phenotypes from genotypes. Journal of Antimicrobial Chemotherapy. 2020; 75 (12): 3491-3500. doi: 10.1093/jac/dkaa345.

16. Sorokulova I. Modern status and perspectives of Bacillus bacteria as probiotics. Prob. Health. 2013; 1 (4): 1-5. doi: 10.4172/2329-8901.1000e106.

17. Milner J.L., Silo-Suh L., Lee J.C. et al. Production of kanosamine by Bacillus cereus UW85. Applied and Environmental Microbiology. 1996; 62(8): 3061-3065. doi: 10.1128/aem.62.8.3061-3065.1996.

18. Vetter N.D., Langill D.M., Anjum S., Boisvert-Martel J. et al. A previously unrecognized kanosamine biosynthesis pathway in Bacillus subtilis. Journal of the American Chemical Society. 2013; 135(16): 5970-5973. doi: 10.1021/ja4010255.

19. Ludwig A., von Rhein C., Bauer S., Hüttinger C. et al. Molecular analysis of cytolysin A (ClyA) in pathogenic Escherichia coli strains. Journal of Bacteriology. 2004; 186(16): 5311-5320. doi: 10.1128/JB.186.16.5311-5320.2004.

20. Murase K. Cytolysin A (ClyA): A bacterial virulence factor with potential applications in nanopore technology, vaccine development, and tumor therapy. Toxins (Basel). 2022; 14(2): 78. doi: 10.3390/toxins14020078.

21. Fu Y., Zhou L., Kuipers O.P. Discovery, biosynthesis, and characterization of a lanthipeptide from Bacillus subtilis EH11 with a unique lanthionine ring pattern. Cell Reports Physical Science. 2023; 4(8), 101524. doi: 10.1016/j.xcrp.2023.101524.

22. Nes I.F., Diep D.B., Holo H. Bacteriocin diversity in Streptococcus and Enterococcus. J. Bacteriol. 2007; 189 (4): 1189-98. doi: 10.1128/JB.01254-06.

23. Wei Y., Wang J., Liu Z. Pei J. et al. Isolation and Characterization of Bacteriocin-Producing Lacticaseibacillus rhamnosus XN2 from Yak Yoghurt and Its Bacteriocin. Molecules. 2022; 27(7): 2066. doi: 10.3390/molecules27072066.

24. Chuljerm H., Deeudom M., Fucharoen S., Mazzacuva F. et al. Characterization of two siderophores produced by Bacillus megaterium: A preliminary investigation into their potential as therapeutic agents. Biochim Biophys Acta Gen Subj. 2020; 1864(10): 129670. doi: 10.1016/j.bbagen.2020.129670.

25. Plowman J.E., Loehr T.M., Goldman S.J., Sanders-Loehr J. Structure and siderophore activity of ferric schizokinen. Journal of Inorganic Biochemistry. 1984; 20: 183-197.

26. Platonov A.V., Rassokhina I.I., Laptev G. Yu., Bolshakov V.N. Preparations use based on bacteria of the genus Bacillus to increase the yield of oats (Avena sativa L.). AGRIVITA Journal of Agricultural Science. 2023; 45(1): 48-55.

27. Khalil O.A.A., Omara M.A. Optimizing rapid pentachlorophenol biodegradation using response surface methodology. Bioremediation Journal. 2022. 27(1):1-20. doi: 10.1080/10889868.2022.2086528.

28. Wołejko E., Łozowicka B., Kaczyński P., Jankowska M. et al. The influence of effective microorganisms (EM) and yeast on the degradation of strobilurins and carboxamides in leafy vegetables monitored by LCMS/MS and health risk assessment. Environmental Monitoring and Assessment. 2016; 188: 1-14. doi: 10.1007/s10661-015-5022-4.

29. Yildirim E.A., Grozina A.A., Ilina L.A., Filippova V.A. et al. Gene expression in farm poultry under the influence of T-2 toxin and the use of biological preparations. Acta Biomedica Scientifica. 2022; 7(3): 180-189. doi: 10.29413/ABS.2022-7.3.19.

30. Tiurina D.G., Melikidi V.K., Okolelova T.M., Yyldyrym E.A. et al. Glyphosate in diets for poultry. Ptitsevodstvo. 2021; 3: 27-30. doi: 10.33845/0033-3239-2021-70-3-27-30.

31. Romero-Munar A., Aroca R., Zamarreño A.M., García-Mina J.M. et al. Dual Inoculation with Rhizophagus irregularis and Bacillus megaterium Improves Maize Tolerance to Combined Drought and High Temperature Stress by Enhancing Root Hydraulics, Photosynthesis and Hormonal Responses.International Journal of Molecular Sciences. 2023; 24 (6): 5193. doi: 10.3390/ijms24065193.

32. Bernardeau M., Lehtinen M.J., Forssten S.D., Nurminen P. Importance of the gastrointestinal life cycle of Bacillus for probiotic functionality. J. Food Sci. Technol. 2017; 54: 2570-2584. doi: 10.1007/s13197-017-2688-3.

33. Pobednov Yu. A., Kosolapov V.M. Biological bases of silage and haylage of grasses (review). Agricultural Biology. 2014; 2: 31-41. doi: 10.15389/agrobiology.2014.2.31eng. (in Russ.)@@ Победнов Ю.А., Косолапов В.М. Биологические основы силосования и сенажирования трав (обзор). Agricultural Biology. 2014; 2: 31-41. doi: 10.15389/agrobiology.2014.2.31eng.

34. Nau-Wagner G., Opper D., Rolbetzki A., Boch J. et al. Genetic control of osmoadaptive glycine betaine synthesis in Bacillus subtilis through the choline-sensing and glycine betaine-responsive GbsR repressor. J. Bacteriol. 2012; 194: 2703-2714. doi: 10.1128/JB.06642-11.

35. Sun Z., Chen X., Wang J. et al.Complete genome sequence of Streptococcus thermophilus strain ND03. J Bacteriol. 2011; 193 (3): 793-4. doi: 10.1128/JB.01374-10.

36. Duboc, P., Mollet B. Applications of exopolysaccharides in the dairy industry.Int. Dairy J. 200111: 759-768. doi: 10.1016/S0958-6946(01)00119-4.

37. Khan N., Bano A., Rahman M.A. et al.Comparative physiological and metabolic analysis reveals a complex mechanism involved in drought tolerance in chickpea (Cicer arietinum L.) induced by PGPR and PGRs. Scientific Reports. 2019; 9 (1): 2097. doi: 10.1038/s41598-019-38702-8.

38. Tewari S., Arora N.K. Role of salicylic acid from Pseudomonas aeruginosa PF23EPS+ ingrowth promotion of sunflower in saline soils infested with phytopathogen Macrophomina phaseolina. Environ. Sustain. 2018; 1: 49-59. doi: 10.1007/s42398-018-0002-6.

39. Majeed A., Muhammad Z., Ahmad H. Plant growth promoting bacteria: Role in soil improvement, abiotic and biotic stress management of crops. Plant Cell Rep. 2018, 37: 1599-1609. doi: 10.1007/s00299-018-2341-2.

40. Quan J., Zheng W., Tan J., Li Z. et al. Glutamic acid and poly-γ-glutamic acid enhanced the heat resistance of chinese cabbage (Brassica rapa L. ssp. pekinensis) by improving carotenoid biosynthesis, photosynthesis, and ROS signaling.International Journal of Molecular Sciences. 2022; 23 (19): 11671. doi: 10.3390/ijms231911671.


Review

For citations:


Tyurina D.G., Laptev G.Yu., Novikova N.I., Ilina L.A., Filippova V.A., Yildirym E.A., Ponomareva E.S., Brazhnik E.A., Zaikin V.A., Savicheva A.A., Patyukova N.S. Promising bacteria-producers of biologically active substances for agriculture and food industry. Experimental and Clinical Gastroenterology. 2025;(7):117-125. (In Russ.) https://doi.org/10.31146/1682-8658-ecg-239-7-117-125

Views: 10

JATS XML


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1682-8658 (Print)