Preview

Experimental and Clinical Gastroenterology

Advanced search

Regarding qualitative methods for evaluating human microbiota in an artificial environment

https://doi.org/10.31146/1682-8658-ecg-239-7-21-30

Abstract

Objective. To study the dynamics of human intestinal microbiota under conditions of artificial isolation (simulating space flights) using a new eubiotic index that evaluates the balance of opportunistic and opportunistic microorganisms. Materials and methods. Data: archival materials of the Soviet space programs (1960-1980) and modern isolation experiments (“Sphinx”: 60 days; “Sirius”: 120/240 days; “Mars-500”: 520 days). Methodology: classical seeding on nutrient media to count microorganism colonies. Index I: calculated based on the priority of bacterial colonization. Statistical processing: Shapiro-Wilk, Kruskal-Wallis, ANOVA, Dunn test (StatTech v3.0.9 and R programs). Results. Short-term isolation (up to 15 days): Peak of the eubiotic index on days 8-11 with subsequent decrease (approximation: R² = 0.9986). Long-term isolation (60-520 days): Steady decrease in the eubiotic index I, reaching a minimum on days 150-300 (I < 1 - dominance of opportunistic microflora). Probiotics slow down, but do not prevent dysbiosis. Model verification: good agreement with the Sphinx experiment. Conclusion. Isolation causes a decrease in the diversity of microbiota and a shift in the balance towards opportunistic microorganisms. The following are recommended for long-term space missions: integration of prebiotics into the diet; personalized probiotics.

About the Authors

V. K. Ilyin
Institute for Biomedical Problems Russian Academy of Sciences
Russian Federation


M. A. Skedina
Institute for Biomedical Problems Russian Academy of Sciences
Russian Federation


N. A. Usanova
Institute for Biomedical Problems Russian Academy of Sciences
Russian Federation


Yu. A. Morozova
Institute for Biomedical Problems Russian Academy of Sciences
Russian Federation


L. V. Starkova
Institute for Biomedical Problems Russian Academy of Sciences
Russian Federation


I. L. Vilenskii
Institute for Biomedical Problems Russian Academy of Sciences
Russian Federation


A. A. Artamonov
Institute for Biomedical Problems Russian Academy of Sciences
Russian Federation


References

1. Ilyin V.K., Orlov O.I., Morozova Yu.A. et al. Prognostic model for bacterial drug resistance genes horizontal spread in space-crews. Acta Astronaut. 2022; 190: 388-394. doi: 10.1016/j.actaastro.2021.10.016.

2. Ilyin V., Orlov O., Skedina M. et al. Mathematical model of antibiotic resistance determinants’ stability under space flight conditions. Astrobiology. 2023; 23(4): 407-414. doi: 10.1089/ast.2022.0076.

3. Zuo T., Wu Xi., Wen W. et. al. Gut Microbiome alterations in COVID-19. Genomics Proteomics Bioinformatics. 2021; 19(5): 679-688. doi: 10/1013/j.gpb.2021.09.004.

4. Yamamoto S., Saito M., Tamuro A. et.al. The human microbiome and COVID-19: A systemic review. PLoS One. 2021; 16(6): e0253293 doi: 10.1371/journal.pone,0253293.

5. Segal J.P., Mak J.W.Y., Mullish B.H. et.al. The gut microbiome: an under-recognised contributor to the COVID-19 pandemic. Therap. Adv.Gastroenterol. 2020; 13 doi: 10/1177/1756284820974914.

6. Baud D., Agry V.D., Gibson G.R. et.al. Using probiotics to flatten the curve of coronavirus disease COVID-19 pandemic. Front. Public Health. 2020; 8 doi: 10.3389/fpubh.2020.00186.

7. Rampelli S., Turroni S., Mallol C. et. al.Components of a Neanderthal gut microbiome recovered from fecal sediments from el salt.Commun Biol. 2021: 4(1):169 doi: 10/1038/s42003-021-01689-y.

8. Sonnenburg J.L., Sonnenburg E.D. Vulnerability of the industrialized microbiota. Science. (1979). 2019; 366(6464). doi: 10.1126/science. aaw9255.

9. Sistiaga A., Mallol C., Galván B., Summons R.E. The Neanderthal meal: a new perspective using faecal biomarkers. PLoS One. 2014 Jun 25;9(6): e101045. doi: 10.1371/journal.pone.0101045.

10. Sun Y., Zuo T., Cheung C.P. et. al. Population-level configurations of gut mycobiome across 6 ethnicities in urban and rural China. Gastroentroenterology. 2021; 160(1): 272-286.e11. doi: 10.10531/j.gastro.2020.09.014.

11. Wei S., Bahl M., Baunwall S.M.D. et. al. Determining gut microbial dysbiosis: a review of applied indexes for assessment of intestinal microbiota imbalances. Appl Environ Microbiol. 2021; 87 (11): e00395-21. doi: 10.1128/AEM.00395-21.

12. Gupta V.K., Kim M., Bukshi U. et al. A predictive index for health status using species-level gut microbiome profiling. Nat Commun. 2020; 11(1): 4635. doi: 10.1038/s41467-020-18476-8.

13. Chen L., Wang D., Garmaeva S. at al. The long-term genetic stability and individual specificity of the human gut microbiome. Cell. 2021; 184 (9):2302-2315.e12. doi: 10.1016/j.cell.2021.03.024.

14. Shiroma H., Darzi Y., Terajima E. et. al. Enteropathway: the metabolic pathway database for the human gut microbioma. Brief Bioinform. 2024; 25(5): bbae419. doi: 10/1093/bib/bbae419.

15. Schmidt T.S.B., Raes J., Bork P. The human gut microbiome: from association to modulation. Cell. 2018; 172(6):1198-1215. doi: 10.1016/j.cell.2018.02.044.

16. Bogomolov V.V., Grigoriev A.I., Koslovskaya I.B. The Russian experience in medical care and health maintenance of the International space station crews. Acta astronaut. 2007; 60 (4-7): 237-246. doi: 10.1016/j.actaastro.2006.08.014.

17. Bäckhed F., Fraser C.M., Ringel Y. et. al. Defining a healthy human gut microbiome: current concepts, future directions and clinical applications. Cell Host Microbe. 2012; 12(5): 611-622. doi: 10.1016/j.chom.2012.10.012.

18. Lane H.W., Schulz L.O. Nutritional questions relevant to space flight. Annu Rev Nutr. 1992; 12 (1): 257-278. doi: 10.1146/annurev.nu.12.070192/001353.

19. Schroeder G.S. Spaceflight nutritional support //Handbook of life support system for spacecraft and extraterrestrial habitat. Cham; Springer International Publishing. 2021. p. p.1-23.

20. Supolkina N., Yusupopva A., Shved D. et al. External communication of autonomous crews under simulation of interplanetary missions. Front Physiol. 2021; 12: 751170. doi: 10.3359/fphy.2021.751170.


Review

For citations:


Ilyin V.K., Skedina M.A., Usanova N.A., Morozova Yu.A., Starkova L.V., Vilenskii I.L., Artamonov A.A. Regarding qualitative methods for evaluating human microbiota in an artificial environment. Experimental and Clinical Gastroenterology. 2025;(7):21-30. (In Russ.) https://doi.org/10.31146/1682-8658-ecg-239-7-21-30

Views: 58

JATS XML


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1682-8658 (Print)