Preview

Экспериментальная и клиническая гастроэнтерология

Расширенный поиск

Фармакокинетика, побочные эффекты, лекарственные формы, лекарственные взаимодействия куркумина

https://doi.org/10.31146/1682-8658-ecg-229-9-147-160

Аннотация

В данном обзоре представлены современные данные о фармакокинетике, побочных эффектах, лекарственных формах и взаимодействиях куркумина. Куркумин, основной биоактивный компонент куркумы, обладает низкой биодоступностью, что обусловлено его низкой растворимостью в воде, быстрым метаболизмом в печени и быстрым выведением из организма. Описаны основные пути метаболизма куркумина, включающие его восстановление и последующее конъюгирование с глюкуроновой кислотой и сульфатами. Рассмотрены побочные эффекты куркумина, такие как гипероксалурия, железодефицитная анемия, гепатотоксичность, аритмии, аллергические реакции и потенциальные канцерогенные свойства. Обсуждаются различные лекарственные формы куркумина, разработанные для повышения его биодоступности, включая липосомы, наночастицы, гидрогели и фитосомы. Особое внимание уделено лекарственным взаимодействиям куркумина с химиотерапевтическими агентами, такими как 5-фторурацил, винкристин, гемцитабин, адриамицин и цисплатин, а также с гиполипидемическими средствами, антиагрегантами и антикоагулянтами. Представленные данные подчеркивают необходимость дальнейших исследований для оптимизации терапевтического использования куркумина и минимизации его побочных эффектов.

Об авторах

Е. В. Шрайнер
Федеральное государственное автономное образовательное учреждение высшего образования «Новосибирский национальный исследовательский государственный университет»; Научно-исследовательский институт «Институт химической биологии и фундаментальной медицины Сибирского отделения Российской академии наук»; Общество с ограниченной ответственностью «Центр новых медицинских технологий»; Общество с ограниченной ответственностью «ЭС.ЛАБ ФАРМ» («Soloways»)
Россия


К. М. Николайчук
Федеральное государственное автономное образовательное учреждение высшего образования «Новосибирский национальный исследовательский государственный университет»; Федеральное государственное бюджетное учреждение науки Новосибирский институт органической химии им. Н.Н. Ворожцова Сибирского отделения Российской академии наук
Россия


М. В. Хвостов
Федеральное государственное автономное образовательное учреждение высшего образования «Новосибирский национальный исследовательский государственный университет»; Федеральное государственное бюджетное учреждение науки Новосибирский институт органической химии им. Н.Н. Ворожцова Сибирского отделения Российской академии наук
Россия


А. В. Павлова
Федеральное государственное бюджетное учреждение науки Новосибирский институт органической химии им. Н.Н. Ворожцова Сибирского отделения Российской академии наук
Россия


Т. Г. Толстикова
Федеральное государственное автономное образовательное учреждение высшего образования «Новосибирский национальный исследовательский государственный университет»; Федеральное государственное бюджетное учреждение науки Новосибирский институт органической химии им. Н.Н. Ворожцова Сибирского отделения Российской академии наук
Россия


А. С. Веременко
Федеральное государственное автономное образовательное учреждение высшего образования «Новосибирский национальный исследовательский государственный университет»
Россия


И. Д. Левченко
Федеральное государственное автономное образовательное учреждение высшего образования «Новосибирский национальный исследовательский государственный университет»
Россия


П. Я. Платонова
Федеральное государственное автономное образовательное учреждение высшего образования «Новосибирский национальный исследовательский государственный университет»
Россия


М. Ф. Новикова
Федеральное государственное автономное образовательное учреждение высшего образования «Новосибирский национальный исследовательский государственный университет»
Россия


А. С. Тумас
Федеральное государственное автономное образовательное учреждение высшего образования «Новосибирский национальный исследовательский государственный университет»
Россия


Е. Е. Вергунова
Федеральное государственное автономное образовательное учреждение высшего образования «Новосибирский национальный исследовательский государственный университет»
Россия


Д. А. Лукичев
Федеральное государственное автономное образовательное учреждение высшего образования «Новосибирский национальный исследовательский государственный университет»
Россия


Д. А. Сергеев
Федеральное государственное автономное образовательное учреждение высшего образования «Новосибирский национальный исследовательский государственный университет»
Россия


А. И. Хавкин
Научно-исследовательский клинический институт детства Министерства здравоохранения Московской области; Национальный исследовательский университет «Белгородский государственный университет»
Россия


Е. А. Покушалов
Общество с ограниченной ответственностью «Центр новых медицинских технологий»; Общество с ограниченной ответственностью «ЭС.ЛАБ ФАРМ» («Soloways»)
Россия


Д. А. Кудлай
Федеральное государственное автономное образовательное учреждение высшего образования «Новосибирский национальный исследовательский государственный университет»; Федеральное государственное автономное образовательное учреждение высшего образования Первый Московский государственный медицинский университет имени И.М. Сеченова Министерства здравоохранения Российской Федерации; Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Московский государственный университет имени М.В. Ломоносова»
Россия


Список литературы

1. Urošević M., Nikolić L., Gajić I., Nikolić V., Dinić A., Miljković V. Curcumin: Biological Activities and Modern Pharmaceutical Forms. Antibiotics (Basel). 2022 Jan 20;11(2):135. doi: 10.3390/antibiotics11020135.

2. Liu S., Liu J., He L., Liu L., Cheng B., Zhou F. et al. A Comprehensive Review on the Benefits and Problems of Curcumin with Respect to Human Health. Molecules. 2022 Jul 8;27(14):4400. doi: 10.3390/molecules27144400.

3. Dei Cas M., Ghidoni R. Dietary Curcumin: Correlation between Bioavailability and Health Potential. Nutrients. 2019 Sep 8;11(9):2147. doi: 10.3390/nu11092147.

4. Kotha R.R., Luthria D.L. Curcumin: Biological, Pharmaceutical, Nutraceutical, and Analytical Aspects. Molecules. 2019 Aug 13;24(16):2930. doi: 10.3390/molecules24162930.

5. Heger M., van Golen R.F., Broekgaarden M., Michel M.C. The molecular basis for the pharmacokinetics and pharmacodynamics of curcumin and its metabolites in relation to cancer. Pharmacol Rev. 2013 Dec 24;66(1):222-307. doi: 10.1124/pr.110.004044.

6. Schneider C., Gordon O.N., Edwards R.L., Luis P.B. Degradation of Curcumin: From Mechanism to Biological Implications. J Agric Food Chem. 2015 Sep 9;63(35):7606-14. doi: 10.1021/acs.jafc.5b00244.

7. Aggarwal B.B., Deb L., Prasad S. Curcumin differs from tetrahydrocurcumin for molecular targets, signaling pathways and cellular responses. Molecules. 2014 Dec 24;20(1):185-205. doi: 10.3390/molecules20010185.

8. Sharma R.A., Euden S.A., Platton S.L., Cooke D.N., Shafayat A., Hewitt H.R. et al. Phase I clinical trial of oral curcumin: biomarkers of systemic activity and compliance. Clin Cancer Res. 2004 Oct 15;10(20):6847-54. doi: 10.1158/1078-0432.CCR-04-0744.

9. Tang M., Larson-Meyer D.E., Liebman M. Effect of cinnamon and turmeric on urinary oxalate excretion, plasma lipids, and plasma glucose in healthy subjects. Am J Clin Nutr. 2008 May;87(5):1262-7. doi: 10.1093/ajcn/87.5.1262.

10. Baxmann A.C., De O.G. Mendonça C., Heilberg I.P. Effect of vitamin C supplements on urinary oxalate and pH in calcium stone-forming patients. Kidney Int. 2003 Mar;63(3):1066-71. doi: 10.1046/j.1523-1755.2003.00815.x.

11. Jiao Y., Wilkinson J., Christine Pietsch E., Buss J.L., Wang W., Planalp R. et al. Iron chelation in the biological activity of curcumin. Free Radic Biol Med. 2006 Apr 1;40(7):1152-60. doi: 10.1016/j.freeradbiomed.2005.

12. Jiao Y., Wilkinson J., Di X., Wang W., Hatcher H., Kock N.D. et al. Curcumin, a cancer chemopreventive and chemotherapeutic agent, is a biologically active iron chelator. Blood. 2009 Jan 8;113(2):462-9. doi: 10.1182/blood-2008-05-155952.

13. Chin D., Huebbe P., Frank J., Rimbach G., Pallauf K. Curcumin may impair iron status when fed to mice for six months. Redox Biol. 2014 Feb 28;2:563-9. doi: 10.1016/j.redox.2014.01.018.

14. Imam Z., Khasawneh M., Jomaa D., Iftikhar H., Sayedahmad Z. Drug Induced Liver Injury Attributed to a Curcumin Supplement. Case Rep Gastrointest Med. 2019 Oct 20;2019:6029403. doi: 10.1155/2019/6029403.

15. Lukefahr A.L., McEvoy S., Alfafara C., Funk J.L. Drug-induced autoimmune hepatitis associated with turmeric dietary supplement use. BMJ Case Rep. 2018 Sep 10;2018: bcr2018224611. doi: 10.1136/bcr-2018-224611.

16. Lopez-Villafuerte L., Clores K.H. Contact dermatitis caused by turmeric in a massage oil. Contact Dermatitis. 2016 Jul;75(1):52-3. doi: 10.1111/cod.12549.

17. Dance-Barnes S.T., Kock N.D., Moore J.E., Lin E.Y., Mosley L.J., D’Agostino R.B. Jr. et al. Lung tumor promotion by curcumin. Carcinogenesis. 2009 Jun;30(6):1016-23. doi: 10.1093/carcin/bgp082.

18. Cheng A.L., Hsu C.H., Lin J.K., Hsu M.M., Ho Y.F., Shen T.S. et al. Phase I clinical trial of curcumin, a chemopreventive agent, in patients with high-risk or pre-malignant lesions. Anticancer Res. 2001 Jul-Aug;21(4B):2895-900.

19. Gopi S., Jacob J., Varma K., Jude S., Amalraj A., Arundhathy C.A. et al.Comparative Oral Absorption of Curcumin in a Natural Turmeric Matrix with Two Other Curcumin Formulations: An Open-label Parallel-arm Study. Phytother Res. 2017 Dec;31(12):1883-1891. doi: 10.1002/ptr.5931.

20. Jäger R., Lowery R.P., Calvanese A.V., Joy J.M., Purpura M., Wilson J.M.Comparative absorption of curcumin formulations. Nutr J. 2014 Jan 24;13:11. doi: 10.1186/1475-2891-13-11.

21. Baspinar Y., Üstündas M., Bayraktar O., Sezgin C. Curcumin and piperine loaded zein-chitosan nanoparticles: Development and in-vitro characterisation. Saudi Pharm J. 2018 Mar;26(3):323-334. doi: 10.1016/j.jsps.2018.01.010.

22. Kim L., Kim J.Y. Chondroprotective effect of curcumin and lecithin complex in human chondrocytes stimulated by IL-1β via an anti-inflammatory mechanism. Food Sci Biotechnol. 2018 Sep 18;28(2):547-553. doi: 10.1007/s10068-018-0470-6.

23. Henriques M.C., Faustino M.A.F., Braga S.S. Curcumin Innovative Delivery Forms: Paving the “Yellow Brick Road” of Antitumoral Phytotherapy. Appl. Sci. 2020; 10:8990. doi: 10.3390/app10248990.

24. Liu W., Zhai Y., Heng X., Che F.Y., Chen W., Sun D. et al. Oral bioavailability of curcumin: problems and advancements. J Drug Target. 2016 Sep;24(8):694-702. doi: 10.3109/1061186X.2016.1157883.

25. Stohs S.J., Chen O., Ray S.D., Ji J., Bucci L.R., Preuss H.G. Highly Bioavailable Forms of Curcumin and Promising Avenues for Curcumin-Based Research and Application: A Review. Molecules. 2020 Mar 19;25(6):1397. doi: 10.3390/molecules25061397.

26. Arima H., Hayashi Y., Higashi T., Motoyama K. Recent advances in cyclodextrin delivery techniques. Expert Opin Drug Deliv. 2015;12(9):1425-41. doi: 10.1517/17425247.2015.1026893.

27. Prasad S., Tyagi A.K., Aggarwal B.B. Recent developments in delivery, bioavailability, absorption and metabolism of curcumin: the golden pigment from golden spice. Cancer Res Treat. 2014 Jan;46(1):2-18. doi: 10.4143/crt.2014.46.1.2.

28. Purpura M., Lowery R.P., Wilson J.M., Mannan H., Münch G., Razmovski-Naumovski V. Analysis of different innovative formulations of curcumin for improved relative oral bioavailability in human subjects. Eur J Nutr. 2018 Apr;57(3):929-938. doi: 10.1007/s00394-016-1376-9.

29. Kasapoglu-Calik M., Ozdemir M. Synthesis and controlled release of curcumin-β-cyclodextrin inclusion complex from nanocomposite poly(N-isopropylacrylamide/sodium alginate) hydrogels. J. Appl. Polym. Sci. 2019; 136(21):47554. doi: 10.1002/app.47554.

30. Pushpalatha R., Selvamuthukumar S., Kilimozhi D. Cyclodextrin nanosponge based hydrogel for the transdermal co-delivery of curcumin and resveratrol: Development, optimization, in vitro and ex vivo evaluation. J. Drug Deliv. Sci. Technol. 2019; 52:55-64. doi: 10.1016/j.jddst.2019.04.025.

31. Chen X., Zou L.Q., Niu J., Liu W., Peng S.F., Liu C.M. The Stability, Sustained Release and Cellular Antioxidant Activity of Curcumin Nanoliposomes. Molecules. 2015 Aug 5;20(8):14293-311. doi: 10.3390/molecules200814293.

32. Saengkrit N., Saesoo S., Srinuanchai W., Phunpee S., Ruktanonchai U.R. Influence of curcumin-loaded cationic liposome on anticancer activity for cervical cancer therapy. Colloids Surf B Biointerfaces. 2014 Feb 1;114:349-56. doi: 10.1016/j.colsurfb.2013.10.005.

33. Kongkaneramit L., Aiemsumang P., Kewsuwan, P. Development of curcumin liposome formulations using polyol dilution method. Songklanakarin J. Sci. Technol. 2016; 38(6):605-610.

34. Tai K., Rappolt M., Mao L., Gao Y., Yuan F. Stability and release performance of curcumin-loaded liposomes with varying content of hydrogenated phospholipids. Food Chem. 2020 Oct 1;326:126973. doi: 10.1016/j.foodchem.2020.126973.

35. Cuomo F., Cofelice M., Venditti F., Ceglie A., Miguel M., Lindman B. et al. In-vitro digestion of curcumin loaded chitosan-coated liposomes. Colloids Surf B Biointerfaces. 2018 Aug 1;168:29-34. doi: 10.1016/j.colsurfb.2017.11.047.

36. Mohanty C., Sahoo S.K. Curcumin and its topical formulations for wound healing applications. Drug Discov Today. 2017 Oct;22(10):1582-1592. doi: 10.1016/j.drudis.2017.07.001.

37. Zakerikhoob M., Abbasi S., Yousefi G., Mokhtari M., Noorbakhsh M.S. Curcumin-incorporated crosslinked sodium alginate-g-poly (N-isopropyl acrylamide) thermo-responsive hydrogel as an in-situ forming injectable dressing for wound healing: In vitro characterization and in vivo evaluation. Carbohydr Polym. 2021 Nov 1;271:118434. doi: 10.1016/j.carbpol.2021.118434.

38. Krausz A.E., Adler B.L., Cabral V., Navati M., Doerner J., Charafeddine R.A. et al. Curcumin-encapsulated nanoparticles as innovative antimicrobial and wound healing agent. Nanomedicine. 2015 Jan;11(1):195-206. doi: 10.1016/j.nano.2014.09.004.

39. Algahtani M.S., Ahmad M.Z., Ahmad J. Nanoemulsion loaded polymeric hydrogel for topical delivery of curcumin in psoriasis. J. Drug Deliv. Sci. Technol. 2020; 59:101847. doi: 10.1016/j.jddst.2020.101847.

40. Guerrero S., Inostroza-Riquelme M., Contreras-Orellana P., Diaz-Garcia V., Lara P., Vivanco-Palma A. et al. Curcumin-loaded nanoemulsion: a new safe and effective formulation to prevent tumor reincidence and metastasis. Nanoscale. 2018 Dec 21;10(47):22612-22622. doi: 10.1039/c8nr06173d.

41. Cheng Y.H., Ko Y.C., Chang Y.F., Huang S.H., Liu C.J. Thermosensitive chitosan-gelatin-based hydrogel containing curcumin-loaded nanoparticles and latanoprost as a dual-drug delivery system for glaucoma treatment. Exp Eye Res. 2019 Feb;179:179-187. doi: 10.1016/j.exer.2018.11.017.

42. Gera M., Sharma N., Ghosh M., Huynh D.L., Lee S.J., Min T. et al. Nanoformulations of curcumin: an emerging paradigm for improved remedial application. Oncotarget. 2017 Jul 11;8(39):66680-66698. doi: 10.18632/oncotarget.19164.

43. Saber-Moghaddam N., Salari S., Hejazi S., Amini M., Taherzadeh Z., Eslami S. et al. Oral nano-curcumin formulation efficacy in management of mild to moderate hospitalized coronavirus disease-19 patients: An open label nonrandomized clinical trial. Phytother Res. 2021 May;35(5):2616-2623. doi: 10.1002/ptr.7004.

44. Liu Y., Huang P., Hou X., Yan F., Jiang Z., Shi J. et al. Hybrid curcumin-phospholipid complex-near-infrared dye oral drug delivery system to inhibit lung metastasis of breast cancer.Int J Nanomedicine. 2019 May 7;14:3311-3330. doi: 10.2147/IJN.S200847.

45. Wang J., Wang L., Zhang L., He D., Ju J., Li W. Studies on the curcumin phospholipid complex solidified with Soluplus®. J Pharm Pharmacol. 2018 Feb;70(2):242-249. doi: 10.1111/jphp.12857.

46. Gupta A., Costa A.P., Xu X., Lee S.L., Cruz C.N., Bao Q. et al. Formulation and characterization of curcumin loaded polymeric micelles produced via continuous processing.Int J Pharm. 2020 Jun 15;583:119340. doi: 10.1016/j.ijpharm.2020.119340.

47. Karavasili C., Andreadis D.A., Katsamenis O.L., Panteris E., Anastasiadou P., Kakazanis Z. et al. Synergistic Antitumor Potency of a Self-Assembling Peptide Hydrogel for the Local Co-delivery of Doxorubicin and Curcumin in the Treatment of Head and Neck Cancer. Mol Pharm. 2019 Jun 3;16(6):2326-2341. doi: 10.1021/acs.molpharmaceut.8b01221.

48. Liu K., Huang R.L., Zha X.Q., Li Q.M., Pan L.H., Luo J.P. Encapsulation and sustained release of curcumin by a composite hydrogel of lotus root amylopectin and chitosan. Carbohydr Polym. 2020 Mar 15;232:115810. doi: 10.1016/j.carbpol.2019.115810.

49. Sampath Udeni Gunathilake T.M., Ching Y.C., Chuah C.H., Illias H.A., Ching K.Y., Singh R. et al. Influence of a nonionic surfactant on curcumin delivery of nanocellulose reinforced chitosan hydrogel.Int J Biol Macromol. 2018 Oct 15;118(Pt A):1055-1064. doi: 10.1016/j.ijbiomac.2018.06.147.

50. Shefa A.A., Sultana T., Park M.K., Lee S.Y., Gwon J.-G., Lee, B.-T. Curcumin incorporation into an oxidized cellulose nanofiber-polyvinyl alcohol hydrogel system promotes wound healing. Mater. Des. 2020; 186(15):108313. doi: 10.1016/j.matdes.2019.108313.

51. Sahin K., Orhan C., Er B., Durmus A.S., Ozercan I.H., Sahin N. et al. Protective Effect of a Novel Highly Bioavailable Formulation of Curcumin in Experimentally Induced Osteoarthritis Rat Model. Curr. Dev. Nutr. 2020; 4(2):1765. doi: 10.1093/cdn/nzaa066_020.

52. Zhang Q., Suntsova L., Chistyachenko Y.S., Evseenko V., Khvostov M.V., Polyakov N.E. et al. Preparation, physicochemical and pharmacological study of curcumin solid dispersion with an arabinogalactan complexation agent.Int J Biol Macromol. 2019;128:158-166. doi:10.1016/j.ijbiomac.2019.01.079O.

53. Zhang Q., Polyakov N.E., Chistyachenko Y.S., Khvostov M.V., Frolova T.S., Tolstikova T.G. et al. Preparation of curcumin self-micelle solid dispersion with enhanced bioavailability and cytotoxic activity by mechanochemistry. Drug Deliv. 2018;25(1):198-209. doi: 10.1080/10717544.2017.1422298.

54. Karthika C., Sureshkumar R., Sajini D.V., Ashraf G.M., Rahman M.H. 5-fluorouracil and curcumin with pectin coating as a treatment regimen for titanium dioxide with dimethylhydrazine-induced colon cancer model. Environ Sci Pollut Res Int. 2022 Sep;29(42):63202-63215. doi: 10.1007/s11356-022-20208-y.

55. Shakibaei M., Kraehe P., Popper B., Shayan P., Goel A., Buhrmann C. Curcumin potentiates antitumor activity of 5-fluorouracil in a 3D alginate tumor microenvironment of colorectal cancer. BMC Cancer. 2015 Apr 10; 15:250. doi: 10.1186/s12885-015-1291-0.

56. Shakibaei M., Buhrmann C., Kraehe P., Shayan P., Lueders C., Goel A. Curcumin chemosensitizes 5-fluorouracil resistant MMR-deficient human colon cancer cells in high density cultures. PLoS One. 2014 Jan 3;9(1): e85397. doi: 10.1371/journal.pone.0085397.

57. Vinod B.S., Antony J., Nair H.H., Puliyappadamba V.T., Saikia M., Narayanan S.S. et al. Mechanistic evaluation of the signaling events regulating curcumin-mediated chemosensitization of breast cancer cells to 5-fluorouracil. Cell Death Dis. 2013 Feb 21;4(2): e505. doi: 10.1038/cddis.2013.26.

58. Ham I.H., Wang L., Lee D., Woo J., Kim T.H., Jeong H.Y. et al. Curcumin inhibits the cancer-associated fibroblast-derived chemoresistance of gastric cancer through the suppression of the JAK/STAT3 signaling pathway.Int J Oncol. 2022 Jul;61(1):85. doi: 10.3892/ijo.2022.5375.

59. Zheng Z.H., You H.Y., Feng Y.J., Zhang Z.T. LncRNA KCNQ1OT1 is a key factor in the reversal effect of curcumin on cisplatin resistance in the colorectal cancer cells. Mol Cell Biochem. 2021 Jul;476(7):2575-2585. doi: 10.1007/s11010-020-03856-x.

60. HuangY.P., Zhuang I.F., Cheng J., Li Q. Curcumin inhibits Wnt signaling pathway and increases the sensitivity of gastric cancer cells to cisplatin. J. Partial. Surg. 2021; 3:749-753.

61. Ruiz de Porras V., Bystrup S., Martínez-Cardús A., Pluvinet R., Sumoy L., Howells L. et al. Curcumin mediates oxaliplatin-acquired resistance reversion in colorectal cancer cell lines through modulation of CXC-Chemokine/NF-κB signalling pathway. Sci Rep. 2016 Apr 19;6:24675. doi: 10.1038/srep24675.

62. Howells L.M., Sale S., Sriramareddy S.N., Irving G.R., Jones D.J., Ottley C.J. et al. Curcumin ameliorates oxaliplatin-induced chemoresistance in HCT116 colorectal cancer cells in vitro and in vivo.Int J Cancer. 2011 Jul 15;129(2):476-86. doi: 10.1002/ijc.25670.

63. Acharyya S., Oskarsson T., Vanharanta S., Malladi S., Kim J., Morris P.G. et al. A CXCL1 paracrine network links cancer chemoresistance and metastasis. Cell. 2012 Jul 6;150(1):165-78. doi: 10.1016/j.cell.2012.04.042.

64. Ning Y., Manegold P.C., Hong Y.K., Zhang W., Pohl A., Lurje G. et al.Interleukin-8 is associated with proliferation, migration, angiogenesis and chemosensitivity in vitro and in vivo in colon cancer cell line models.Int J Cancer. 2011 May 1;128(9):2038-49. doi: 10.1002/ijc.25562.

65. James M.I., Iwuji C., Irving G., Karmokar A., Higgins J.A., Griffin-Teal N. et al. Curcumin inhibits cancer stem cell phenotypes in ex vivo models of colorectal liver metastases, and is clinically safe and tolerable in combination with FOLFOX chemotherapy. Cancer Lett. 2015 Aug 10;364(2):135-41. doi: 10.1016/j.canlet.2015.05.005.

66. Esatbeyoglu T., Huebbe P., Ernst I.M., Chin D., Wagner A.E., Rimbach G. Curcumin - from molecule to biological function. Angew Chem Int Ed Engl. 2012 May 29;51(22):5308-32. doi: 10.1002/anie.201107724.

67. Panahi Y., Ahmadi Y., Teymouri M., Johnston T.P., Sahebkar A. Curcumin as a potential candidate for treating hyperlipidemia: A review of cellular and metabolic mechanisms. J Cell Physiol. 2018 Jan;233(1):141-152. doi: 10.1002/jcp.25756.

68. Zou J., Zhang S., Li P., Zheng X., Feng D. Supplementation with curcumin inhibits intestinal cholesterol absorption and prevents atherosclerosis in high-fat diet-fed apolipoprotein E knockout mice. Nutr Res. 2018 Aug;56:32-40. doi: 10.1016/j.nutres.2018.04.017.

69. Sen C.K., Khanna S., GordИЛlo G., Bagchi D., Bagchi M., Roy S. Oxygen, oxidants, and antioxidants in wound healing: an emerging paradigm. Ann N Y Acad Sci. 2002 May;957:239-49. doi: 10.1111/j.1749-6632.2002.tb02920.x.

70. Maheswaraiah A., Rao L.J., Naidu K.A. Anti-platelet activity of water dispersible curcuminoids in rat platelets. Phytother Res. 2015 Mar;29(3):450-8. doi: 10.1002/ptr.5274.

71. Srivastava K.C., Bordia A., Verma S.K. Curcumin, a major component of food spice turmeric (Curcuma longa) inhibits aggregation and alters eicosanoid metabolism in human blood platelets. Prostaglandins Leukot Essent Fatty Acids. 1995 Apr;52(4):223-7. doi: 10.1016/0952-3278(95)90040-3.

72. Gilmer J.F., Murphy M.A., Shannon J.A., Breen C.G., Ryder S.A., Clancy J.M. Single oral dose study of two isosorbide-based aspirin prodrugs in the dog. J Pharm Pharmacol. 2003 Oct;55(10):1351-7. doi: 10.1211/0022357022007.

73. Kamath S., Blann A.D., Lip G.Y. Platelets and atrial fibrillation. Eur Heart J. 2001 Dec;22(24):2233-42. doi: 10.1053/euhj.2001.2612.

74. Kim D.C., Ku S.K., Bae J.S. Anticoagulant activities of curcumin and its derivative. BMB Rep. 2012 Apr;45(4):221-6. doi: 10.5483/bmbrep.2012.45.4.221.


Рецензия

Для цитирования:


Шрайнер Е.В., Николайчук К.М., Хвостов М.В., Павлова А.В., Толстикова Т.Г., Веременко А.С., Левченко И.Д., Платонова П.Я., Новикова М.Ф., Тумас А.С., Вергунова Е.Е., Лукичев Д.А., Сергеев Д.А., Хавкин А.И., Покушалов Е.А., Кудлай Д.А. Фармакокинетика, побочные эффекты, лекарственные формы, лекарственные взаимодействия куркумина. Экспериментальная и клиническая гастроэнтерология. 2024;(9):147-160. https://doi.org/10.31146/1682-8658-ecg-229-9-147-160

For citation:


Shrayner E.V., Nikolaychuk K.M., Khvostov M.V., Pavlova A.V., Tolstikova T.G., Veremenko A.S., Levchenko I.D., Platonova P.Ya., Novikova M.F., Tumas A.S., Vergunova E.E., Lukichev D.A., Sergeev D.A., Khavkin A.I., Pokushalov E.A., Kudlai D.A. Pharmacokinetics, side effects, dosage forms, drug interactions of curcu-mine. Experimental and Clinical Gastroenterology. 2024;(9):147-160. (In Russ.) https://doi.org/10.31146/1682-8658-ecg-229-9-147-160

Просмотров: 414


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 1682-8658 (Print)