Preview

Экспериментальная и клиническая гастроэнтерология

Расширенный поиск

Анемии при эндокринных заболеваниях

https://doi.org/10.31146/1682-8658-ecg-229-9-44-54

Аннотация

Заболевания эндокринных желез повышают риск развития анемии и являются самостоятельной причиной их возникновения. Из всех эндокринологических заболеваний в наибольшей степени развитию анемии способствуют сахарный диабет и диабетическая нефропатия, гипотиреоз, надпочечниковая недостаточность, гипогонадизм. Патофизиологическая основа возникновения анемии при данных состояниях многофактора и требует дальнейшего изучения. Эндокринные заболевания приводят к развитию микро-, нормо- макроцитарной и гипо-, нормо-, гиперхромной анемий. Возникающая анемия приводит к утяжелению течения основного заболевания, таким образом, замыкая, патологический круг. Одновременное и комплексное лечение как эндокринной патологии, так и анемии приводит к более успешной коррекции анемии.

Об авторах

К. А. Штейн
Федеральное государственное бюджетное учреждение «Национальный медицинский исследовательский центр имени В.А. Алмазова» Министерства здравоохранения Российской Федерации
Россия


А. Ю. Бабенко
Федеральное государственное бюджетное учреждение «Национальный медицинский исследовательский центр имени В.А. Алмазова» Министерства здравоохранения Российской Федерации
Россия


Список литературы

1. WHO guideline on use of ferritin concentrations to assess iron status in individuals and populations [Internet]. Geneva: World Health Organization; 2020. Available from: https://www.ncbi.nlm.nih.gov/books/NBK569880/

2. Hoffbrand A.V., Moss P.A.H., Pettit J.E. Erythropoiesis and general aspects of anaemia // Hoffbrand, A.V., Moss, P.A.H., Pettit J.E. Essential Haematology. - Oxford: Blackwell Publishing, 2006. pp. 18-20.

3. World Health Organization. Worldwide prevalence of anaemia 1993-2005. WHO Global Database on Anaemia. Geneva: WHO Press; 2008. p. 7-8. Available at: https://apps.who.int/iris/bitstream/handle/10665/43894/9789241596657_eng.pdf

4. World Health Organization. The world health report: reducing risks, promoting healthy life. Geneva: World Health Organization; 2002.

5. Dallman P.R. Iron. // Brown M. Present knowledge in nutrition. - Washington: Nu-trition Foundation; 1990. p. 241-50.

6. Ciesla B. Red blood cell production, function, and relevant red cell morphology. // Ciesla B. Haematology in practice. - Philadelphia: F.A. Davis Company; 2007. p. 37-46.

7. World Health Organization, Centre for disease control and prevention. Assessing the iron status of populations. 2nd ed. Geneva: World Health Organization; 2007. https://www.who.int/publications/i/item/9789241596107.

8. McLean E., Cogswell M., Egli I., Wojdyla D., de Benoist B. Worldwide prevalence of anaemia, WHO vitamin and mineral nutrition information system, 1993-2005. Public Health Nutr. 2009;12(4):444-454. doi: 10.1017/S1368980008002401.

9. World Health Organization. Serum ferritin concentrations for the assessment of iron status and iron deficiency in populations. Vitamin and Mineral Nutrition In-formation System. Geneva: WHO, 2011. https://iris.who.int/bitstream/handle/10665/85843/WHO_NMH_NHD_MNM_11.2_eng.pdf?sequence=1&isAllowed=y.

10. Wilson J., Yao G.L., Raftery J. et al. A systematic review and economic evalua-tion of epoetin alpha, epoetin beta and darbepoetin alpha in anaemia associated with cancer, especially that attributable to cancer treatment. Health Technol Assess. 2007;11(13):1-iv. doi: 10.3310/hta11130.

11. Jager U., Lechner K. Autoimmune hemolytic anemia. // Hoffman R, Benz Jr EJ, Silberstein LE, et al. Hematology: basic principles and practice. - Philadelphia: Elsevier Saunders, 2012. Chap 44.

12. Lichtman M.A., Kaushansky K., Prchal J.T., Levi M.M., Burns L.J., Armitage J.O Anemia of Endocrine Disorders. // Lichtman M.A., Kaushansky K., Prchal J.T., Levi M.M., Burns L.J., Armitage J.O. Williams Manual of Hematology. - New York City: McGraw-Hill Education; 2017. Chap 6. https://hemonc.mhmedical.com/content.aspx?bookid=1889§ionid=137387551

13. Soliman A.T., De Sanctis V., Yassin M., Wagdy M., Soliman N. Chronic anemia and thyroid function. Acta Biomed. 2017;88(1):119-127. doi: 10.23750/abm.v88i1.6048.

14. Wopereis D.M., Du Puy R.S., van Heemst D. et al. The Relation Between Thy-roid Function and Anemia: A Pooled Analysis of Individual Participant Data. J Clin Endocrinol Metab. 2018;103(10):3658-3667. doi: 10.1210/jc.2018-00481.

15. Patel R.P., Jain A. Study of anemia in primary hypothyroidism. Thyroid re-search and practice. 2017;14(1): 22-24. doi: 10.4103/0973-0354.200564.

16. Refaat B. Prevalence and characteristics of anemia associated with thyroid disor-ders in non-pregnant Saudi women during the childbearing age: A cross-sectional study. Biomed J. 2015;38(4):307-316. doi: 10.4103/2319-4170.151032.

17. Bilonia S.K., Pal S., Charan K.S., Nehra N.K. A study of prevalence of ane-mia among hypothyroidism patients and relationship between types of anemia and hypothyroidism.International Journal of Research in Medical Sciences. 2022;11(1): 149-155. doi: 10.18203/2320-6012.ijrms20223641.

18. Garofalo V., Condorelli R.A., Cannarella R., Aversa A., Calogero A.E., La Vignera S. Relationship between Iron Deficiency and Thyroid Function: A Sys-tematic Review and Meta-Analysis. Nutrients. 2023;15(22):4790. doi: 10.3390/nu15224790.

19. Szczepanek-Parulska E., Hernik A., Ruchała M. Anemia in thyroid diseases. Pol Arch Intern Med. 2017;127(5):352-360. doi: 10.20452/pamw.3985.

20. Erdogan M., Kösenli A., Ganidagli S., Kulaksizoglu M. Characteristics of anemia in subclinical and overt hypothyroid patients. Endocr J. 2012;59(3):213-220. doi: 10.1507/endocrj.ej11-0096.

21. Das C., Sahana P.K., Sengupta N., Giri D., Roy M., Mukhopadhyay P. Etiology of anemia in primary hypothyroid subjects in a tertiary care center in Eastern In-dia. Indian J Endocrinol Metab. 2012;16(Suppl 2): S361-S363. doi: 10.4103/2230-8210.104093.

22. Larsson S.O. Anemia and iron metabolism in hypothyroidism. Acta Med Scand. 1957;157(5):349-363. doi: 10.1111/j.0954-6820.1957.tb14445.x

23. Chu J.Y., Monteleone J.A., Peden V.H., Graviss E.R., Vernava A.M. Anemia in children and adolescents with hypothyroidism. Clin Pediatr (Phila). 1981;20(11):696-699. doi: 10.1177/000992288102001102.

24. Franzese A., Salerno M., Argenziano A., Buongiovanni C., Limauro R., Tenore A. Anemia in infants with congenital hypothyroidism diagnosed by neonatal screening. J Endocrinol Invest. 1996;19(9):613-619. doi: 10.1007/BF03349027.

25. Antonijević N., Nesović M., Trbojević B., Milosević R. Anemije u hipotireozi [Anemia in hypothyroidism]. Med Pregl. 1999 Mar-May;52(3-5):136-40. Croatian. PMID: 10518398.

26. Hess S.Y., Zimmermann M.B., Arnold M., Langhans W., Hurrell R.F. Iron defi-ciency anemia reduces thyroid peroxidase activity in rats. J Nutr. 2002;132(7):1951-1955. doi: 10.1093/jn/132.7.1951.

27. Pasricha S.R., Tye-Din J., Muckenthaler M.U., Swinkels D.W. Iron deficiency. Lancet. 2021;397 (10270):233-248. doi: 10.1016/S0140-6736(20)32594-0.

28. Zimmermann M.B., Köhrle J. The impact of iron and selenium deficiencies on iodine and thyroid metabolism: biochemistry and relevance to public health. Thy-roid. 2002;12(10):867-878. doi: 10.1089/105072502761016494.

29. Golde D.W., Bersch N., Chopra I.J., Cline M.J. Thyroid hormones stimulate erythropoiesis in vitro. Br J Haematol. 1977;37(2):173-177. doi: 10.1111/j.1365-2141.1977.tb06833.x.

30. Maggio M., De Vita F., Fisichella A. et al. The role of the multiple hormonal dysregulation in the onset of “anemia of aging”: focus on testosterone, igf-1, and thyroid hormones.Int J Endocrinol. 2015;2015:292574. doi: 10.1155/2015/292574.

31. Zimmermann M.B., Burgi H., Hurrell R.F. Iron deficiency predicts poor maternal thyroid status during pregnancy. J Clin Endocrinol Metab. 2007;92(9):3436-3440. doi: 10.1210/jc.2007-1082.

32. Wang F., Zhang Y., Yuan Z. et al. The association between iron status and thyroid hormone levels during pregnancy. J Trace Elem Med Biol. 2022;74:127047. doi: 10.1016/j.jtemb.2022.127047.

33. Okuroglu N., Ozturk A., Özdemir A. Is iron deficiency a risk factor for the de-velopment of thyroid autoantibodies in euthyroid women with reproductive ag-es?. Acta Endocrinol (Buchar). 2020;16(1):49-52. doi: 10.4183/aeb.2020.49.

34. Zhang Y., Huang X., Chen Z. et al. Iron deficiency, a risk factor for thyroid auto-immunity during second trimester of pregnancy in china. Endocr Pract. 2020;26(6):595-603. doi: 10.4158/EP-2019-0220

35. He L., Shen C., Zhang Y. et al. Evaluation of serum ferritin and thyroid function in the second trimester of pregnancy. Endocr J. 2018;65(1):75-82. doi: 10.1507/endocrj.EJ17-0253.

36. Fu J., Yang A., Zhao J. et al. The relationship between iron level and thyroid function during the first trimester of pregnancy: a cross-sectional study in Wuxi, China. J Trace Elem Med Biol. 2017;43:148-152. doi: 10.1016/j.jtemb.2017.01.004.

37. Li S., Gao X., Wei Y., Zhu G., Yang C. The Relationship between Iron Deficien-cy and Thyroid Function in Chinese Women during Early Pregnancy. J Nutr Sci Vitaminol (Tokyo). 2016;62(6):397-401. doi: 10.3177/jnsv.62.397.

38. Veltri F., Decaillet S., Kleynen P. et al. Prevalence of thyroid autoimmunity and dysfunction in women with iron deficiency during early pregnancy: is it altered? Eur J Endocrinol. 2016;175(3):191-199. doi: 10.1530/EJE-16-0288.

39. Maldonado-Araque C., Valdés S., Lago-Sampedro A. et al. Iron deficiency is as-sociated with hypothyroxinemia and hypotriiodothyroninemia in the Spanish general adult population: Di@bet.es study. Sci Rep. 2018;8(1):6571. doi: 10.1038/s41598-018-24352-9.

40. Brigham D.E., Beard J.L. Effect of thyroid hormone replacement in iron-deficient rats. Am J Physiol. 1995;269(5 Pt 2): R1140-R1147. doi: 10.1152/ajpregu.1995.269.5.R1140.

41. Beard J.L., Brigham D.E., Kelley S.K., Green M.H. Plasma thyroid hormone ki-netics are altered in iron-deficient rats. J Nutr. 1998;128(8):1401-1408. doi: 10.1093/jn/128.8.1401.

42. Zhang H.Y., Teng X.C., Shan Z.Y. et al. Association between iron deficiency and prevalence of thyroid autoimmunity in pregnant and non-pregnant women of childbearing age: a cross-sectional study. Chin Med J (Engl). 2019;132(18):2143-2149. doi: 10.1097/CM9.0000000000000409.

43. Weetman A.P. The immunopathogenesis of chronic autoimmune thyroiditis one century after hashimoto. Eur Thyroid J. 2013;1(4):243-250. doi: 10.1159/000343834.

44. Eftekhari M.H., Simondon K.B., Jalali M. et al. Effects of administration of iron, iodine and simultaneous iron-plus-iodine on the thyroid hormone profile in iron-deficient adolescent Iranian girls. Eur J Clin Nutr. 2006;60(4):545-552. doi: 10.1038/sj.ejcn.1602349.

45. Ravanbod M., Asadipooya K., Kalantarhormozi M., Nabipour I., Omrani G.R. Treatment of iron-deficiency anemia in patients with subclinical hypothyroidism. Am J Med. 2013;126(5):420-424. doi: 10.1016/j.amjmed.2012.12.009.

46. Cinemre H., Bilir C., Gokosmanoglu F., Bahcebasi T. Hematologic effects of levothyroxine in iron-deficient subclinical hypothyroid patients: a randomized, double-blind, controlled study. J Clin Endocrinol Metab. 2009;94(1):151-156. doi: 10.1210/jc.2008-1440.

47. Thomas M.C., MacIsaac R.J., Tsalamandris C. et al. The burden of anaemia in type 2 diabetes and the role of nephropathy: a cross-sectional audit. Nephrol Dial Transplant. 2004;19(7):1792-1797. doi: 10.1093/ndt/gfh248.

48. Loutradis C., Skodra A., Georgianos P. et al. Diabetes mellitus increases the prevalence of anemia in patients with chronic kidney disease: A nested case-control study. World J Nephrol. 2016;5(4):358-366. doi: 10.5527/wjn.v5.i4.358.

49. Barbieri J., Fontela P.C., Winkelmann E.R. et al. Anemia in patients with type 2 diabetes mellitus. Anemia. 2015;2015:354737. doi: 10.1155/2015/354737.

50. Erez D., Shefler C., Roitman E. et al. Anemia in patients with diabetes and prediabetes with normal kidney function: prevalence and clinical outcomes. En-docr Pract. 2022;28(2):129-134. doi: 10.1016/j.eprac.2021.10.005.

51. Shams N., Osmani M.H. Newly diagnosed anemia in admitted diabetics, fre-quency, etiology and associated factors. J Coll Physicians Surg Pak. 2015;25(4):242-246.

52. Faghir-Ganji M., Abdolmohammadi N., Nikbina M. et al. Prevalence of ane-mia in patients with diabetes mellitus: a systematic review and meta-analysis. Bio-med Environ Sci. 2024;37(1):96-107. doi: 10.3967/bes2024.008.

53. Bonakdaran S., Gharebaghi M., Vahedian M. Prevalence of anemia in type 2 diabetes and role of renal involvement. Saudi J Kidney Dis Transpl. 2011;22(2):286-90.

54. Adejumo B., Dimkpa U., Ewenighi C., Onifade A. et al. Incidence and risk of anemia in type-2 diabetic patients in theabsence of renal impairment. Health. 2012;4(6):304-308. doi: 10.4236/health.2012.46050.

55. Antwi-Bafour S., Hammond S., Adjei J.K., Kyeremeh R., Martin-Odoom A., Ekem I. A case-control study of prevalence of anemia among patients with type 2 diabetes. J Med Case Rep. 2016;10(1):110. doi: 10.1186/s13256-016-0889-4.

56. Feteh V.F., Choukem S.P., Kengne A.P., Nebongo D.N., Ngowe-Ngowe M. Anemia in type 2 diabetic patients and correlation with kidney function in a ter-tiary care sub-Saharan African hospital: a cross-sectional study. BMC Nephrol. 2016;17:29. doi: 10.1186/s12882-016-0247-1.

57. He B.B., Xu M., Wei L., Gu Y.J., Han J.F., Liu Y.X., Bao Y.Q., Jia W.P. Relationship between Anemia and Chronic Complications in Chinese Patients with Type 2 Diabetes Mellitus. Arch Iran Med. 2015 May;18(5):277-83. PMID: 25959909.

58. Li Y., Shi H., Wang W.M. et al. Prevalence, awareness, and treatment of ane-mia in Chinese patients with nondialysis chronic kidney disease: first multicenter, cross-sectional study. Medicine. 2016;95(24): e3872. doi: 10.1097/MD.0000000000003872

59. Li Vecchi M., Fuiano G., Francesco M. et al. Prevalence and severity of anaemia in patients with type 2 diabetic nephropathy and different degrees of chronic renal insufficiency. Nephron Clin Pract. 2007;105(2): c62-c67. doi: 10.1159/000097600.

60. Christy A.L., Manjrekar P.A., Babu R.P., Hegde A., Rukmini M.S. Influence of iron deficiency anemia on hemoglobin A1c levels in diabetic individuals with controlled plasma glucose levels. Iran Biomed J. 2014;18(2):88-93. doi: 10.6091/ibj.1257.2014.

61. Brooks A.P., Metcalfe J., Day J.L., Edwards M.S. Iron deficiency and glyco-sylated haemoglobin A. Lancet. 1980;2(8186):141. doi: 10.1016/s0140-6736(80)90019-7.

62. Kim C., Bullard K.M., Herman W.H., Beckles G.L. Association between iron deficiency and A1C Levels among adults without diabetes in the National Health and Nutrition Examination Survey, 1999-2006. Diabetes Care. 2010;33(4):780-785. doi: 10.2337/dc09-0836.

63. Sinha N., Mishra T.K., Singh T., Gupta N. Effect of iron deficiency anemia on hemoglobin A1c levels. Ann Lab Med. 2012;32(1):17-22. doi: 10.3343/alm.2012.32.1.17.

64. Ng J.M., Cooke M., Bhandari S., Atkin S.L., Kilpatrick E.S. The effect of iron and erythropoietin treatment on the A1C of patients with diabetes and chronic kid-ney disease. Diabetes Care. 2010;33(11):2310-2313. doi: 10.2337/dc10-0917.

65. Rafat D., Rabbani T.K., Ahmad J., Ansari M.A. Influence of iron metabolism indices on HbA1c in non-diabetic pregnant women with and without iron-deficiency anemia: effect of iron supplementation. Diabetes Metab Syndr. 2012;6(2):102-105. doi: 10.1016/j.dsx.2012.05.011.

66. Hashimoto K., Noguchi S., Morimoto Y. et al. A1C but not serum glycated al-bumin is elevated in late pregnancy owing to iron deficiency. Diabetes Care. 2008;31(10):1945-1948. doi: 10.2337/dc08-0352.

67. Davidson M.B., Schriger D.L. Effect of age and race/ethnicity on HbA1c lev-els in people without known diabetes mellitus: implications for the diagnosis of di-abetes. Diabetes Res Clin Pract. 2010;87(3):415-421. doi: 10.1016/j.diabres.2009.12.013.

68. Sharifi F., Sazandeh S.H. Serum ferritin in type 2 diabetes mellitus and its rela-tionship with HbA1c. Acta Medica Iranica. 2004; 42(2):142-5.

69. Soliman A.T., De Sanctis V., Yassin M., Soliman N. Iron deficiency anemia and glucose metabolism. Acta Biomed. 2017;88(1):112-118. doi: 10.23750/abm.v88i1.6049.

70. Guo W., Zhou Q., Jia Y., Xu J. Increased levels of glycated hemoglobin a1c and iron deficiency anemia: a review. Med Sci Monit. 2019;25:8371-8378. doi: 10.12659/MSM.916719.

71. Chen X., Xie J., Zhang Y. et al. Prognostic value of hemoglobin concentration on renal outcomes with diabetic kidney disease: a retrospective cohort study. Dia-betes Metab Syndr Obes. 2024;17:1367-1381. doi: 10.2147/DMSO.S452280.

72. Pappa M., Dounousi E., Duni A., Katopodis K. Less known pathophysiologi-cal mechanisms of anemia in patients with diabetic nephropathy.Int Urol Nephrol. 2015;47(8):1365-1372. doi: 10.1007/s11255-015-1012-2.

73. Pan W., Han Y., Hu H., He Y. Association between hemoglobin and chronic kidney disease progression: a secondary analysis of a prospective cohort study in Japanese patients. BMC Nephrol. 2022;23(1):295. doi: 10.1186/s12882-022-02920-6.

74. Donnelly L.A., Dennis J.M., Coleman R.L. et al. Risk of anemia with met-formin use in type 2 diabetes: a MASTERMIND study. Diabetes Care. 2020;43(10):2493-2499. doi: 10.2337/dc20-1104.

75. Craig K.J., Williams J.D., Riley S.G. et al. Anemia and diabetes in the absence of nephropathy. Diabetes Care. 2005;28(5):1118-1123. doi: 10.2337/diacare.28.5.1118.

76. Thomas M.C. Anemia in diabetes: marker or mediator of microvascular dis-ease?. Nat Clin Pract Nephrol. 2007;3(1):20-30. doi: 10.1038/ncpneph0378.

77. Weiss G., Ganz T., Goodnough L.T. Anemia of inflammation. Blood. 2019;133(1):40-50. doi: 10.1182/blood-2018-06-856500.

78. Angelousi A., Larger E. Anaemia, a common but often unrecognized risk in diabetic patients: a review. Diabetes Metab. 2015;41(1):18-27. doi: 10.1016/j.diabet.2014.06.001.

79. Williams A., Bissinger R., Shamaa H. et al. Pathophysiology of red blood cell dysfunction in diabetes and its complications. Pathophysiology. 2023;30(3):327-345. doi: 10.3390/pathophysiology30030026.

80. Kim A., Fung E., Parikh S.G. et al. A mouse model of anemia of inflamma-tion: complex pathogenesis with partial dependence on hepcidin. Blood. 2014;123(8):1129-1136. doi: 10.1182/blood-2013-08-521419.

81. Xie L., Shao X., Yu Y. et al. Anemia is a risk factor for rapid eGFR decline in type 2 diabetes. Front Endocrinol (Lausanne). 2023;14:1052227. doi: 10.3389/fendo.2023.1052227.

82. Singh D.K., Winocour P., Farrington K. Erythropoietic stress and anemia in diabetes mellitus. Nat Rev Endocrinol. 2009;5(4):204-210. doi: 10.1038/nrendo.2009.17.

83. Bosman D.R., Winkler A.S., Marsden J.T., Macdougall I.C., Watkins P.J. Anemia with erythropoietin deficiency occurs early in diabetic nephropathy. Dia-betes Care. 2001;24(3):495-499. doi: 10.2337/diacare.24.3.495.

84. Thomas M.C. The high prevalence of anemia in diabetes is linked to function-al erythropoietin deficiency. Semin Nephrol. 2006;26(4):275-282. doi: 10.1016/j.semnephrol.2006.05.003.

85. Thomas M.C., Tsalamandris C., Macisaac R., Jerums G. Functional erythro-poietin deficiency in patients with Type 2 diabetes and anaemia. Diabet Med. 2006;23(5):502-509. doi: 10.1111/j.1464-5491.2006.01829.x.

86. Tsai S.F., Tarng D.C. Anemia in patients of diabetic kidney disease. J Chin Med Assoc. 2019;82(10):752-755. doi: 10.1097/JCMA.0000000000000175.

87. Wu C.T., Tsai Y.T., Jung H.K. et al. Metformin and the risk of anemia of ad-vanced chronic kidney disease in patients with type 2 diabetes mellitus. J Clin Pharmacol. 2022;62(2):276-284. doi: 10.1002/jcph.1965.

88. Guan Y., Hao C., Cha D.R. et al. Thiazolidinediones expand body fluid vol-ume through PPARgamma stimulation of ENaC-mediated renal salt absorption. Nat Med. 2005;11(8):861-866. doi: 10.1038/nm1278.

89. Lee J.H., Choi J.D., Kang J.Y., Yoo T.K., Park Y.W. Testosterone deficiency and the risk of anemia: A propensity score-matched analysis. Am J Hum Biol. 2022;34(8): e23751. doi: 10.1002/ajhb.23751.

90. Valancy D., Blachman-Braun R., Kuchakulla M., Nackeeran S., Ramasamy R. Association between low testosterone and anaemia: analysis of the national health and nutrition examination survey. Andrologia. 2021;53(11): e14210. doi: 10.1111/and.14210.

91. Ferrucci L., Maggio M., Bandinelli S. et al. Low testosterone levels and the risk of anemia in older men and women. Arch Intern Med. 2006;166(13):1380-1388. doi: 10.1001/archinte.166.13.1380.

92. Grossmann M., Panagiotopolous S., Sharpe K. et al. Low testosterone and anaemia in men with type 2 diabetes. Clin Endocrinol (Oxf). 2009;70(4):547-553. doi: 10.1111/j.1365-2265.2008.03357.x.

93. Turpin C., Catan A., Guerin-Dubourg A. et al. Enhanced oxidative stress and damage in glycated erythrocytes. PLoS One. 2020;15(7): e0235335. doi: 10.1371/journal.pone.0235335.

94. Buys A.V., Van Rooy M.J., Soma P., Van Papendorp D., Lipinski B., Pretorius E. Changes in red blood cell membrane structure in type 2 diabetes: a scanning electron and atomic force microscopy study. Cardiovasc Diabetol. 2013;12:25. doi: 10.1186/1475-2840-12-25.

95. NeamŢu M.C., CrăiŢoiu Ş., Avramescu E.T. et al. The prevalence of the red cell morphology changes in patients with type 2 diabetes mellitus. Rom J Morphol Embryol. 2015;56(1):183-189.

96. Kurt Y.G., Cayci T., Aydin F.N., Agilli M. Is red cell distribution width a useful biomarker for risk assessment of diabetes mellitus?. J Intern Med. 2014;276(5):537. doi: 10.1111/joim.12292.

97. Engström G., Smith J.G., Persson M., Nilsson P.M., Melander O., Hedblad B. Response to letter to the editor ‘Is red cell distribution width a biomarker in risk as-sessment of diabetes mellitus?’. J Intern Med. 2014;276(5):538. doi: 10.1111/joim.12291.

98. Engström G., Smith J.G., Persson M., Nilsson P.M., Melander O., Hedblad B. Red cell distribution width, haemoglobin A1c and incidence of diabetes mellitus. J Intern Med. 2014;276(2):174-183. doi: 10.1111/joim.12188.

99. Xiong X.F., Yang Y., Chen X. et al. Red cell distribution width as a significant indicator of medication and prognosis in type 2 diabetic patients. Sci Rep. 2017;7(1):2709. doi: 10.1038/s41598-017-02904-9.

100. Nada A.M. Red cell distribution width in type 2 diabetic patients. Diabetes Metab Syndr Obes. 2015;8:525-533. doi: 10.2147/DMSO.S85318.

101. Zhang M., Zhang Y., Li C., He L. Association between red blood cell distri-bution and renal function in patients with untreated type 2 diabetes mellitus. Ren Fail. 2015;37(4):659-663. doi: 10.3109/ 0886022X.2015.1010938.

102. Tsuboi S., Miyauchi K., Kasai T. et al. Impact of red blood cell distribution width on long-term mortality in diabetic patients after percutaneous coronary in-tervention. Circ J. 2013;77(2):456-461. doi: 10.1253/circj.cj-12-0730.

103. Blaslov K., Kruljac I., Mirošević G., Gaćina P., Kolonić S.O., Vrkljan M. The prognostic value of red blood cell characteristics on diabetic retinopathy develop-ment and progression in type 2 diabetes mellitus. Clin Hemorheol Microcirc. 2019;71(4):475-481. doi: 10.3233/CH-180422.

104. Afonso L., Zalawadiya S.K., Veeranna V., Panaich S.S., Niraj A., Jacob S. Relationship between red cell distribution width and microalbuminuria: a popula-tion-based study of multiethnic representative US adults. Nephron Clin Pract. 2011;119(4): c277-c282. doi: 10.1159/000328918.

105. Semba R.D., Patel K.V., Ferrucci L. et al. Serum antioxidants and inflamma-tion predict red cell distribution width in older women: the Women’s Health and Aging Study I. Clin Nutr. 2010;29(5):600-604. doi: 10.1016/j.clnu.2010.03.001.

106. Mukundan H., Resta T.C., Kanagy N.L. 17Beta-estradiol decreases hypoxic in-duction of erythropoietin gene expression. Am J Physiol Regul Integr Comp Physiol. 2002;283(2): R496-R504. doi: 10.1152/ajpregu.00573.2001.

107. Steinglass P., Gordon A.S., Charipper H.A. Effect of castration and sex hor-mones on blood of the rat. Proceedings of the Society for Experimental Biology and Medicine. 1941;48(1):169-176. doi: 10.3181/00379727-48-13259.

108. Al-Sharefi A., Mohammed A., Abdalaziz A., Jayasena C.N. Androgens and Anemia: Current Trends and Future Prospects. Front Endocrinol (Lausanne). 2019;10:754. doi: 10.3389/fendo.2019.00754.

109. Shahani S., Braga-Basaria M., Maggio M., Basaria S. Androgens and erythro-poiesis: past and present. J Endocrinol Invest. 2009;32(8):704-716. doi: 10.1007/BF03345745.

110. Ohlander S.J., Varghese B., Pastuszak A.W. Erythrocytosis Following Testos-terone Therapy. Sex Med Rev. 2018;6(1):77-85. doi: 10.1016/j.sxmr.2017.04.001.

111. Zheng Z., Pan J., Liu M. et al. Anemia and testosterone deficiency risk: insights from NHANES data analysis and a Mendelian randomization analysis. Aging Male. 2024;27(1):2346312. doi: 10.1080/ 13685538.2024.2346312.

112. Paller C.J., Shiels M.S., Rohrmann S. et al. Association between sex steroid hormones and hematocrit in a nationally representative sample of men. J Androl. 2012;33(6):1332-1341. doi: 10.2164/jandrol.111.015651.

113. Girelli D., Marchi G., Camaschella C. Anemia in the Elderly. Hemasphere. 2018;2(3): e40. doi: 10.1097/HS9.0000000000000040.

114. Pencina K.M., Travison T.G., Artz A.S. et al. Efficacy of testosterone replace-ment therapy in correcting anemia in men with hypogonadism: a randomized clin-ical trial. JAMA Netw Open. 2023;6(10): e2340030. doi: 10.1001/jamanetworkopen.2023.40030.

115. Roy C.N., Snyder P.J., Stephens-Shields A.J. et al. association of testosterone levels with anemia in older men: a controlled clinical trial. JAMA Intern Med. 2017;177(4):480-490. doi: 10.1001/jamainternmed.2016.9540.

116. Bachman E., Travison T.G., Basaria S. et al. Testosterone induces erythrocytosis via increased erythropoietin and suppressed hepcidin: evidence for a new eryth-ropoietin/hemoglobin set point. J Gerontol A Biol Sci Med Sci. 2014;69(6):725-735. doi: 10.1093/gerona/glt154.

117. Moriyama Y., Fisher J.W. Effects of testosterone and erythropoietin on erythroid colony formation in human bone marrow cultures. Blood. 1975;45(5):665-670.

118. Wang R.N, Green J., Wang Z. et al. Bone Morphogenetic Protein (BMP) signal-ing in development and human diseases. Genes Dis. 2014;1(1):87-105. doi: 10.1016/j.gendis.2014.07.005.

119. Fisher J.W. Erythropoietin: physiology and pharmacology update. Exp Biol Med (Maywood). 2003;228(1):1-14. doi: 10.1177/153537020322800101.

120. Miyagawa S., Kobayashi M., Konishi N., Sato T., Ueda K. Insulin and insulin-like growth factor I support the proliferation of erythroid progenitor cells in bone marrow through the sharing of receptors. Br J Haematol. 2000;109(3):555-562. doi: 10.1046/j.1365-2141.2000.02047.x.

121. Franco M., Khorrami Chokami K., Albertelli M. et al. Modulatory activity of testosterone on growth pattern and IGF-1 levels in vanishing testis syndrome: a case report during 15 years of follow-up. BMC Endocr Disord. 2023;23(1):13. doi: 10.1186/s12902-022-01258-2.

122. Hobbs C.J., Plymate S.R., Rosen C.J., Adler R.A. Testosterone administration increases insulin-like growth factor-I levels in normal men. J Clin Endocrinol Metab. 1993;77(3):776-779. doi: 10.1210/jcem. 77.3.7690364.

123. Lentjes M.H., Niessen H.E., Akiyama Y., de Bruïne A.P., Melotte V., van Enge-land M. The emerging role of GATA transcription factors in development and disease. Expert Rev Mol Med. 2016;18: e3. doi: 10.1017/erm.2016.2.

124. Chao K.C., Chang C.C., Chiou H.Y., Chang J.S. Serum ferritin is inversely cor-related with testosterone in boys and young male adolescents: a cross-sectional study in Taiwan. PLoS One. 2015;10(12): e0144238. Published 2015 Dec 8. doi: 10.1371/journal.pone.0144238.

125. Liu Z., Ye F., Zhang H. et al. The association between the levels of serum ferri-tin and sex hormones in a large scale of Chinese male population. PLoS One. 2013;8(10): e75908. doi: 10.1371/journal.pone.0075908.

126. Charmandari E., Chrousos G.P. Adrenal Insufficiency // Martini L. Encyclope-dia of Endocrine Diseases - Amsterdam: Elsevier, 2004, pp. 75-80. doi: 10.1016/B0-12-475570-4/00029-9.

127. Erichsen M.M., Løvås K., Skinningsrud B. et al. Clinical, immunological, and genetic features of autoimmune primary adrenal insufficiency: observations from a Norwegian registry. J Clin Endocrinol Metab. 2009;94(12):4882-4890. doi: 10.1210/jc.2009-1368.

128. Baez-Villasenor J., Rath C.E., Finch C.A. The blood picture in Addison’s dis-ease. Blood. 1948;3(7):769-773.

129. Graner J.L. Addison, pernicious anemia and adrenal insufficiency. CMAJ. 1985 Nov 1;133(9):855-7, 880. PMID: 3902186.

130. Gursoy A., Dogruk Unal A., Ayturk S. et al. Polycythemia as the first manifes-tation of Cushing’s disease. J Endocrinol Invest. 2006;29(8):742-744. doi: 10.1007/BF03344186.

131. Fisher J.W. Increase in circulating red cell volume of normal rats after treatment with hydrocortisone or corticosterone. Proc Soc Exp Biol Med. 1958;97(3):502-505. doi: 10.3181/00379727-97-23787.

132. Stellacci E., Di Noia A., Di Baldassarre A., Migliaccio G., Battistini A., Migliac-cio AR.Interaction between the glucocorticoid and erythropoietin receptors in human erythroid cells. Exp Hematol. 2009;37(5):559-572. doi: 10.1016/j.exphem.2009.02.005.

133. Bauer A., Tronche F., Wessely O. et al. The glucocorticoid receptor is required for stress erythropoiesis. Genes Dev. 1999;13(22):2996-3002. doi: 10.1101/gad.13.22.2996.

134. von Lindern M., Zauner W., Mellitzer G. et al. The glucocorticoid receptor co-operates with the erythropoietin receptor and c-Kit to enhance and sustain prolif-eration of erythroid progenitors in vitro. Blood. 1999;94(2):550-559.

135. Eisenbarth G.S., Gottlieb P.A. Autoimmune polyendocrine syndromes. N Engl J Med. 2004;350(20):2068-2079. doi: 10.1056/NEJMra030158.

136. Husebye E.S., Anderson M.S., Kämpe O. Autoimmune Polyendocrine Syn-dromes. N Engl J Med. 2018;378(12): 1132-1141. doi: 10.1056/NEJMra1713301.

137. Arram N., Riyaz R., Khatroth S., Shrestha A.B. A case report on autoimmune polyglandular syndrome type 2 with pernicious anemia. Clin Case Rep. 2023;11(6): e7413. doi: 10.1002/ccr3.7413.

138. Van den Driessche A., Eenkhoorn V., Van Gaal L., De Block C. Type 1 dia-betes and autoimmune polyglandular syndrome: a clinical review.Neth J Med. 2009;67(11):376-387.

139. Dick M., Croxson M. A rare simultaneous manifestation of polyglandular au-toimmune syndrome type II. Endocrinol Diabetes Metab Case Rep. 2020. doi: 10.1530/EDM-20-0051.


Рецензия

Для цитирования:


Штейн К.А., Бабенко А.Ю. Анемии при эндокринных заболеваниях. Экспериментальная и клиническая гастроэнтерология. 2024;(9):44-54. https://doi.org/10.31146/1682-8658-ecg-229-9-44-54

For citation:


Shtein K.A., Babenko A.Yu. Anemias in endocrine diseases. Experimental and Clinical Gastroenterology. 2024;(9):44-54. (In Russ.) https://doi.org/10.31146/1682-8658-ecg-229-9-44-54

Просмотров: 798


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 1682-8658 (Print)