Preview

Experimental and Clinical Gastroenterology

Advanced search

Use of sodium polyprenylphosphate to correct changes in the immune response caused by Helicobacter pylori CagA proteins in the experiment

https://doi.org/10.31146/1682-8658-ecg-207-11-183-190

Abstract

Helicobacter pylori (HP) bacteria have a wide range of pathogenicity factors. The HP genome contains genes of the CagA group (cytotoxin-associated genes). Infection with CagA-positive HP strains is associated with the production of pro-inflammatory cytokines, which are involved in the maintenance and development of destructive and inflammatory changes in the organism. Here we studied the role of CagA proteins in the regulation of the immune response in DBA mice and evaluated the corrective effect of polyprenyl phosphate (PP) on this process. Genetically modified strains of E. coli were used, differing by the presence of an island of genes encoding the synthesis of HP CagA proteins. The drug Phosprenyl was used as a source of PP. The subpopulation composition of spleen cells was evaluated by flow cytofluorimetry using monoclonal antibodies. The level of IL 10, TGF-β in blood serum was determined by the enzyme immunoassay. The proliferative activity of splenocytes was measured by the standard procedure based on the inclusion of3H-thymidine in the DNA. CagA HP proteins caused the polarization of the immune response by the Th1-dominant type, which was expressed by an increase in the population of CD4+cells, CD25+ and CD25+ Foxp3+ T cells and increase proliferation T- limphocytes. Inoculation of CagA + bacteria was accompanied by a quantitative increase in TGF-β produced by activated Treg cells. PP inoculation led to the normalization of the CD4 and CD8 T cells, a decrease in the populations of CD25+, Foxp3+, CD25+ Foxp3+ cells, and further increase in the IL-10 levels. Thus, PP corrected cellular immune response, prevented the pronounced polarization of the Th1 immune response, and reduced the activation of Treg population. The results obtained indicate a possible decrease in the pro-inflammatory immune response under the influence of PP.

About the Authors

T. N. Nikolaeva
Federal State Budgetary Institution “National Research Centre for Epidemiology and Microbiology named after the honorary academician N. F. Gamaleya” of the Ministry of Health of the Russian Federation
Russian Federation


V. V. Kozlov
Federal State Budgetary Institution “National Research Centre for Epidemiology and Microbiology named after the honorary academician N. F. Gamaleya” of the Ministry of Health of the Russian Federation
Russian Federation


E. A. Grigorieva
Federal State Budgetary Institution “National Research Centre for Epidemiology and Microbiology named after the honorary academician N. F. Gamaleya” of the Ministry of Health of the Russian Federation
Russian Federation


T. N. Kozhevnikova
Federal State Budgetary Institution “National Research Centre for Epidemiology and Microbiology named after the honorary academician N. F. Gamaleya” of the Ministry of Health of the Russian Federation
Russian Federation


A. V. Sanin
Federal State Budgetary Institution “National Research Centre for Epidemiology and Microbiology named after the honorary academician N. F. Gamaleya” of the Ministry of Health of the Russian Federation
Russian Federation


A. V. Pronin
Federal State Budgetary Institution “National Research Centre for Epidemiology and Microbiology named after the honorary academician N. F. Gamaleya” of the Ministry of Health of the Russian Federation
Russian Federation


References

1. Shiota S., Suzuki R., Yamaoka Y. The significance of virulence factors in Helicobater pylori. J. of digestive diseases. 2013; 14(3):341-349. doi: 10.1111/1751-2980.12054.

2. Novikov V. V., Lapin V. A., Melent’ev D.A., Mokhonova E. V. Features of the human immune response to Helicobacter pylori infection. MediAl. 2019;2(24):55-69. doi: 10.21145/2225-0026-2019-2-55-69.@@ Новиков В., В., Лапин В. А., Мелентьев Д. А., Мохонова Е. В. Особенности иммунного ответа человека на инфицирование Helicobacter pylori.МедиАль. 2019;2(24):55-69. doi: 10.21145/2225-0026-2019-2-55-69.

3. Higashi H., Tsutsumi R., Fugita A., Yamazaki S., Asaka M., Azuma T., Hatakeyama M. Biological activity of Helicodfcter pylori virulence factor CagA is determined by variation in the tyrosine phosphorylation sites. PNAS. 2002; 99(22): 14428-14433. doi: 10.1073/pnas.222375399

4. Dadashzadeh K., Milani M., Sorni M. H. The prevalence of Helicobacter pylori cag A, and iceA genotype and possible clinical outcomes. Acta Medica Mediterranea. 2015; 31(7):1345-1349.

5. Zambon C.-F. Helicobacter pylori babA2, cagA, and s1 vacA genes work synergistically in causing intestinal metaplasia. J. Clin. Pathol.2003;56:287-291. doi: 10.1136/jcp.56.4.28.

6. Peek R.M., Fiske C., Wilson K. T. Role of innate immunity in Helicobacter pylori-induced gastric malignancy. Physiol.rev.2010;90:831-858. doi: 10.1152/physrev.00039.2009.

7. Wroblewski L.E., Peek P. M., Wilson K. T. Helicobacter pylori and gastric cancerfactors that modulate diseaserisk. Clin.Microbiol.Rev. 2010;23(4): 713-739. doi: 10.1128/CMR.00011-10.

8. Shibata A., Parsonnet J., Longacre T. A., Garcia M. I., Puligandla B., Davis R. E., Vogelman J. H., Orentreich N., Habel L. A. CagA status of Helicobacter pylori infection and p53 gene mutation in gastric adenocarcinoma. Carcinogenesis. 2002;23:419-424. doi: 10.1093/carcin/23.3.419.

9. Lundgren A., Suri-Payer E., Enarsson K., Svennerholm A-M., Lundin B. S. Helicobacter pylori-specific CD4+high regulatory cells suppress memory T-cell responses to H. pylori in infected individuals. Infect. Immun. 2003;71(4):1765-1762. doi:10.1128/IAI.71.4.1755-1762.2003.

10. Muller A., Oertli M. C., Arnold I. H. pylori exploits and manipulates innate and adaptive immune cell signaling pathways to establish persistent infection. Cell Communication and Signaling. 2011;9(25):2-9.

11. Ferreira R. M., Pinto-Ribeiro I., Wen X., Marcos-Pinto R., Dinis-Ribeiro M., Carneiro F., Figueiredo C. Helicobacter pylori cagAPromoter Region Sequences Influence CagA Expression and Interleukin 8 Secretion. J. Infect. Dis. 2015;213:669-673. doi: 10.1093/infdis/jiv467.

12. Lang B.J., Gorrell R. J., Tafreshi M., Hatakeyama M., Kwok T., Price J. T. The Helicobacter pylori cytotoxin CagA is essential for suppressing host heat shock protein expression. Cell Stress Chaperones. 2016;21:523-533. doi: 10.1007/s12192-016-0680-x.

13. Chernutskaya S. P., Gervazieva V. B. The role of the immune system in the persistence of Helicobacter pylori. Infectious diseases. 2008;6 (2):69-77. (in Russ.)@@ Чернуцкая С. П., Гервазиева В. Б. Роль иммунной системы в персистенции Helicobacter pylori.Инфекционные болезни. 2008;6 (2):69-77.

14. Uspensky Yu.P., Gorbacheva I. A., Suvorov A. N., Galagudzya M. M., Baryshnikova N. V., Bogdanova S. A. Immunological changes in Helicobacter pylori invasion. Vaccine development prospects. Translational medicine. 2018;5(6)31-40. (in Russ.) doi: 10.18705/2311-4495-2018-5-6-31-40.@@ Успенский Ю. П., Горбачева И. А., Суворов А. Н., Галагудзя М. М., Барышникова Н. В., Богданова С. А. Иммунологические изменения при инвазии Helicobacter pylori перспективы создания вакцин. Трансляционная медицина. 2018;5(6)31-40. doi: 10.18705/2311-4495-2018-5-6-31-40.

15. Dubtsova E. A. Some immunological aspects of ulceration. Experimental and Clinical Gastroenterology. 2002; 4:9-14. (in Russ.)@@ Дубцова Е. А. Некоторые иммунологические аспекты язвообразования. Экспериментальная и клиническая гастроэнтерология. 2002; 4:9-14.

16. Bagneri N., Salimzadeh L., Shizad H. The role of T helper 1-cell response in Helicobacter pylori infection. Microbial pathogenesis. 2018;123:1-8. doi: 10.1016/j.micpath.2018.06.033.

17. Lerner A., Arleevskaya M., et al. Microbes and virus are bugging the gat in celiac disease. Are they friends or foes? Front Microbiol. 2017; 8:1382. doi: 10.3389/fmicb.2017.01392.

18. Jang T. J. The number of Foxp3-positive regulatory T cells is increased in Helicobacter pylori gastritis and gastric cancer. Pathol. Res. pract. 2010; 206:34-38. doi: 10.1016/j.prp.2009.07.019.

19. Lundgren A., Stromberg E., Sjoling A. Mucosal FOXP3-expressing CD4+ CD25+ highregulatory T cells in Helicobacter pylori-infected patients. Infect and Immun. 2005;73:523-531 doi: 10.1128/IAI.73.9.5612-5619.2005.

20. Izcue A., Coombes J. L., Powrie F. Regulatory T cells suppress systemic and mucosal immune activation to controle intestinal inflammation. Immunol.Rev. 2006; 212:256-271. doi: 10.1111/j.0105-2896.2006.00423.x.

21. Сardoso C. R., Teixeria G., Provinciatto P. R. Modulation of mucosal immunity in a murine model of food-induced intestinal inflammation. Clinic Exp.Allergy. 2008;38(2):338-349. doi: 10.1111/j.1365-2222.2007.02866.x.

22. Anderl F, Gerhard M., Helicobacter pylori vaccination: is there a path to protection? J. Gastroenterol. 2014; 20(34): 11939-11949. doi: 10.3748/wjg.v20.i34.11939.

23. Sutton P., Boag J. M. Status of vaccine research and development for Helicobacter pylori. Vaccine. 2019 Nov 28;37(50):7295-7299. doi: 10.1016/j.vaccine.2018.01.001.

24. Chojnacki T., Dallner G. The biological role of dolichol. Biochem J. 1988; 251(1): 1-9. doi: 10.1042/bj2510001.

25. Pronin A. V., Grigorieva E. A., Sanin A. V., Narovlyansky A. N., et al. Polyprenols as possible factors that determine an instructive role of the innate immunity in the acquired immune response.Russian J. Immunol. 2002; 7 (2): 136-141. (in Russ.)

26. Sanin A. V., Ganshina I. V., Sudyina G. F., et al. Phosphorylated polyprenols - a new class of compounds with anti-inflammatory and bronchodilator activity. Infection and immunity. 2011;1(4): 355-360. (in Russ.)@@ Санин А. В., Ганшина И. В., Судьина Г. Ф., Санина В. Ю., Кожевникова Т. Н., Пронин А. В., Наровлянский А. Н., Суханова С. А., Проскурина О. В., Митрохин Н. М. Фосфорилированные полипренолы - новый класс соединений с противовоспалительной и бронхолитической активностью. Инфекция и иммунитет. 2011;1(4): 355-360.

27. Syrov V. N., Weiss E. V., Egamova F. R., et al. Antiulcer activity of polyprenols isolated from cotton leaves. Chemical and Pharmaceutical Journal. 2012;46(3):34-38. (in Russ.)@@ Сыров В. Н., Вайс Е. В., Эгамова Ф. Р., и др. Противоязвенная активность полипренолов, выделенных из листьев хлопчатника. Химико-фармацевтический Журнал. 2012;46(3):34-38.

28. Sobolev S. M., Nikolaeva T. N., Grigorieva E. A., Pronin A. V. Sodium polyprenyl phosphate (phosprenyl) in the mechanism of interleukin-2-dependent recovery of delayed-type hypersensitivity inhibited in vitro. Medical Immunology. 2012;14(4-5):399-402. (in Russ.)@@ Соболев С. М., Николаева Т. Н., Григорьева Е. А., Пронин А. В. Полипренилфосфат натрия (фоспренил) в механизме зависимого от интерлейкина-2 восстановления ингибированной in vitro гиперчувствительности замедленного типа. Медицинск. Иммунол.2012;14(4-5):399-402.

29. Sobolev S. M., Nikolaeva T. N., Grigorieva E. A. Pronin A. V. The role of lectin-substrate recognition in the immunoregulatory interaction of interleukin-2 and Ig G. Medical Immunology. 2010;12(1-2):13-20. (in Russ.)@@ Соболев С. М., Николаева Т. Н., Григорьева Е. А. Пронин А. В. Роль лектин-субстратного распознавания в иммунорегуляторном взаимодействии интерлейкина-2 и Ig G.Медицинская иммунология. 2010;12(1-2):13-20.

30. Sobolev S. M., Nikolaeva T. N., Grigorieva E. A., Pronin A. V. Lactobacillus plantarum and the immunomodulator fosprenil competitively distinguish oligomannosis from N-glycan ovalbumin. J. microbiol. 2011; 6:42-46. (in Russ.)@@ Соболев С. М., Николаева Т. Н.Григорьева Е. А. Пронин А. В.-Lactobacillus plantarum и иммуномодулятор фоспренил конкурентно различают олигоманнозу из N-гликан овальбумина. Ж. микробиол., 2011; 6:42-46.

31. Kandulski A., Malefertheiner P., Wex T. Role of regulatory T-cells in H. pylori-induced gastritis ahd gastric cancer. Anticancer research. 2010 Apr;30(4):1093-103. PMID: 20530414.

32. Beswick E. J., Pinchuk V., Earley R. B., Schmitt D., A., Reyes V. E. Role of gastric e. Piteal cell-derived transforming growth factor β in reduced CD4+ T cell proliferation and development of regulatory T cells during Helicobacter pylori infection. Infect.Iimmun. 2011; 79(7):2737-2745. doi: 10.1128/IAI.01146-10.

33. Stromberg E., Edebo A., Lundin B. S., Bergin P., Brisslert M., Svennerholm A. M., Lindholm C Down-regulation of epithelial IL-8 responses in Helicobacter pylori-infected duodenal ulcer patients depends on host factors, rather than bacterial factors. Clin.exp.Immunol. 2005;140:117-125. doi: 10.1111/j.1365-2249.2005.02736.x.

34. Robinson K., Kenefect R., Pidgeon E. L., et al. Helicobacter pylori induced peptice ulcere disease inassociated with inadequate regulatory T- cell responses. Gut. 2008;37: 1375-1385. doi: 10.1136/gut.2007.137539.

35. Bagheri N., Shirzad H., Elahi S., et al. Downregulated regulatory T cell function is associated with increased peptic ulcer in Helicobacter pylori-infection. Microb Pathog. 2017 Sep;110:165-175. doi: 10.1016/j.micpath.2017.06.040.


Review

For citations:


Nikolaeva T.N., Kozlov V.V., Grigorieva E.A., Kozhevnikova T.N., Sanin A.V., Pronin A.V. Use of sodium polyprenylphosphate to correct changes in the immune response caused by Helicobacter pylori CagA proteins in the experiment. Experimental and Clinical Gastroenterology. 2022;(11):183-190. (In Russ.) https://doi.org/10.31146/1682-8658-ecg-207-11-183-190

Views: 315


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1682-8658 (Print)