Preview

Experimental and Clinical Gastroenterology

Advanced search

The conjugacy of the use of synbiotic Maxilac® with the severity and duration of the course of COVID-19 in outpatient treatment

https://doi.org/10.31146/1682-8658-ecg-207-11-86-93

Abstract

Despite the mass population immunization, the total spread of the COVID-19 pandemic once again made scientists around the world doubt the effectiveness of currently existing methods of prevention and treatment of a novel coronavirus infection. The rationale for a potentially new approach to the preventive therapy of COVID-19 using probiotic bacterial strains was the presence of a bidirectional “gut-lung” axis, which interacts between these organs through transported soluble microbial metabolites in blood. The study aimed to determine the relationship between the correction of the gut microbiota with the polycomponent synbiotic Maxilac® and clinical and laboratory markers of the severity of the new coronavirus infection. During the open-label, prospective, observational study 60 patients with a confirmed diagnosis of COVID-19, a moderate severity and the presence of gastrointestinal symptoms were divided into 2 groups: the 1st performed the outpatient complex standard treatment with the addition of synbiotic, the 2nd - without addition. All patients of group 1 showed positive dynamics of clinical and laboratory indicators of COVID-19 severity, compared with group 2, where 2 patients needed hospitalization due to the aggravation of the course of novel coronavirus infection. A reduction in the duration of clinical symptoms and the duration of outpatient treatment was revealed in a group of patients taking Maxilac®. The dynamics of clinical and laboratory indicators reflecting the course of COVID-19 indicate the effectiveness of symbiotic’s usage as adjuvant therapy and the possibility of recommending its use in the complex treatment of patients with a novel coronavirus infection.

About the Authors

O. V. Soldatova
Institute “Medical Academy named after S. I. Georgievsky” FGАOU VO “СFU named after V. I. Vernadsky”
Russian Federation


I. Ya. Goryanskaya
Institute “Medical Academy named after S. I. Georgievsky” FGАOU VO “СFU named after V. I. Vernadsky”
Russian Federation


E. A. Zaharyan
Institute “Medical Academy named after S. I. Georgievsky” FGАOU VO “СFU named after V. I. Vernadsky”
Russian Federation


V. S. Ivanchenko
Institute “Medical Academy named after S. I. Georgievsky” FGАOU VO “СFU named after V. I. Vernadsky”
Russian Federation


References

1. Harvey W. T., Carabelli A. M., Jackson B., et al. SARS-CoV-2 variants, spike mutations and immune escape. Nat Rev Microbiol. 2021;19(7):409-424. doi: 10.1038/s41579-021-00573-0

2. Salim S. Abdool Karim, Quarraisha Abdool Karim Omicron SARS-CoV-2 variant: a new chapter in the COVID-19 pandemic. Lancet. 2021;398(10317):2126-2128, doi: 10.1016/S0140-6736(21)02758-6

3. Fontanet A, Autran B, Lina B, Kieny MP, Abdool Karim SS, Sridhar D SARS-CoV-2 variants and ending the COVID-19 pandemic. Lancet. 2021;397:952-954. doi: 10.1016/S0140-6736(21)00370-6

4. Temporary guidelines [Prevention, diagnosis and treatment of novel coronavirus infection (COVID-19)]. Ministry of Health of the Russian Federation. Version 14. 12/27/2021; 40-41. (in Russ.)@@ Временные методические рекомендации «Профилактика, диагностика и лечение новой коронавирусной инфекции (COVID-19)». Министерство здравоохранения Российской Федерации. Версия 14. 27.12.2021; 40-41.

5. Xiao F., Tang M., Zheng X., Liu Y., Li X., Shan H. Evidence for Gastrointestinal Infection of SARS-CoV-2. Gastroenterology. 2020;158(6):1831-1833. doi: 10.1053/j.gastro.2020.02.055

6. Gao Q.Y., Chen Y. X., Fang J. Y. 2019 novel coronavirus infection and gastrointestinal tract. J Dig Dis. 2020;21:125-26.doi: 10.1111/1751-2980.12851. 40.

7. Zuo T., Zhang F., Lui G. C.Y., Yeoh Y. K., Li A. Y.L., Zhan H., et al. Alterations in Gut Microbiota of Patients With COVID-19 During Time of Hospitalization. Gastroenterology. 2020;159(3):944-955.е8. doi: 10.1053/j.gastro.2020.05.048

8. Conte L, Maurizio Toraldo D. Targeting the gut-lung microbiota axis using a high-fibre diet and probiotics may have anti-inflammatory effects in COVID-19 infection. Ther Adv Respir Dis. 2020;14:1-5. doi: 10.1177/1753466620937170 39.

9. Aktas B., Aslim B. Gut-lung axis and dysbiosis in COVID-19. Turk J Biol. 2020 Jun 21;44 (3):265-72. doi: 10.3906/biy-2005-102.

10. Bradley K.C., Finsterbusch K., Schnepf D., Crotta, S., Llorian M., Davidson S., et al. Microbiota-Driven Tonic Interferon Signals in Lung Stromal Cells Protect from Influenza Virus Infection. Cell Rep. 2019;28(1):245-256.e4. doi: 10.1016/j.celrep.2019.05.105.

11. Benedetta B., Vincenzo C., Erasmo N. Probiotics and Covid-19.Int J Food Sci Nutr. 2021;72(3):293-299. doi: 10.1080/09637486.2020.1807475.

12. Kozhevnikov A. A., Raskina K. V., Martynova E. Yu., et al.Intestinal microbiota: current views on the species composition, function and research methods. RMZh. 2017;17:1244-1247. (in Russ.)@@ Кожевников А. А., Раскина К. В., Мартынова Е. Ю., и др. Кишечная микробиота: современные представления о видовом составе, функции и методах исследования. РМЖ. 2017;17:1244-1247.

13. Neish А. Microbes in Gastrointestinal Health and Disease. Gastroenterology. 2009;136: 65-80. doi: 10.1053/j.gastro.2008.10.080.

14. Ladodo K. S., Borovik T. E., V. A. Skvortsova. Use of pro- and prebiotic action products in baby food. Questions of modern pediatrics. 2006:5(6):64-69 (in Russ.)@@ Ладодо К.С, Боровик Т.Э, В. А. Скворцова. Использование продуктов про- и пребиотического действия в детском питании. Вопросы современной педиатрии 2006;5(6):64-69

15. Andreeva I. V. The effectiveness of probiotics for infections of the gastrointestinal tract. Doctor.Ru. Gastroenterology. 2015;12(113):34-41. (in Russ.)@@ Андреева И. В. Эффективность пробиотиков при инфекциях желудочно-кишечного тракта. Доктор. Ру. Гастроэнтерология.2015;12(113):34-41

16. Mirzoyan A. Probiotics and more. Overview of the probiotic market following the results of the 1st half of 2016. Pharmaceutical Bulletin. 2016;33(862):18-19. (in Russ.)@@ Мирзоян А. Пробиотики и не только. Обзор рынка пробиотиков по итогам 1-го полугодия 2016 года. Фармацевтический вестник. 2016;33(862):18-19.

17. Andreeva I. V., Dovgan E. V., Stetsyuk O. U. The use of probiotics for the prevention and treatment of infectious diseases in children. J.International medicine. Pediatrics / Neonatology. 2016; 2, no.6(23):47-52 (in Russ.)@@ Андреева И. В., Довгань Е. В., Стецюк О. У. Применение пробиотиков для профилактики и лечения инфекционных заболеваний у детей. Ж. Международной медицины. Педиатрия/Неонатология. 2016; 2№ 6(23):47-52

18. Plotnikova E. Yu., Zakharova Yu. V. When to Prescribe an Effective Probiotic. RMZh. 2018;7(I):24-25. (in Russ.)@@ Плотникова Е. Ю., Захарова Ю. В. Когда нужно назначить эффективный пробиотик. РМЖ. Медицинское обозрение.2018; 7(I):24-25

19. Evdokimova A. G., Zhukolenko L. V., Ivanova T. B., Stryuk R. I. Correction of intestinal microflora synbiotic Maxilac. Experimental and Clinical Gastroenterology. 2019;166(6):62-69. (In Russ.) doi: 10.31146/1682-8658-ecg-166-6-62-69.@@ Евдокимова А. Г., Жуколенко Л. В., Иванова Т. Б., Стрюк Р. И. Коррекция микрофлоры кишечника синбиотиком Максилак. Экспериментальная и клиническая гастроэнтерология. 2019;166(6):62-69. doi: 10.31146/1682-8658-ecg-166-6-62-69.

20. Levy, M.; Thaiss, C.A.; Elinav, E. Metabolites: Messengers between the Microbiota and the Immune System. Genes Dev. 2016;30:1589-1597. doi: 10.1101/gad.284091.116.

21. Sittipo, P.; Shim, J.; Lee, Y. Microbial Metabolites Determine Host Health and the Status of Some Diseases.Int. J. Mol. Sci. 2019;20:5296. doi: 10.3390/ijms20215296.

22. Postler, T.S.; Ghosh, S. Understanding the Holobiont: How Microbial Metabolites Affect Human Health and Shape the Immune System. Cell Metab. 2017;26:110-130. doi: 10.1016/j.cmet.2017.05.008.

23. Zheng, L.; Kelly, C.J.; Battista, K.D.; Schaefer, R.; Lanis, J.M.; Alexeev, E.E.; Wang, R.X.; Onyiah, J.C.; Kominsky, D.J.; Colgan, S. P. Microbial-Derived Butyrate Promotes Epithelial Barrier Function through IL-10 Receptor-Dependent Repression of Claudin-2. J. Immunol. 2017;199:2976-2984. doi: 10.4049/jimmunol.1700105

24. Haak, B.W.; Littmann, E.R.; Chaubard, J.-L.; Pickard, A.J.; Fontana, E.; Adhi, F.; Gyaltshen, Y.; Ling, L.; Morjaria, S.M.; Peled, J.U.; et al. Impact of Gut Colonization with Butyrate Producing Microbiota on Respiratory Viral Infection Following Allo-HCT. Blood 2018. doi: 10.1182/blood-2018-01-828996

25. Steed, A.L.; Christophi, G.P.; Kaiko, G.E.; Sun, L.; Goodwin, V.M.; Jain, U.; Esaulova, E.; Artyomov, M.N.; Morales, D.J.; Holtzman, M.J.; et al. The Microbial Metabolite Desaminotyrosine Protects from Influenza through Type I Interferon. Science.2017;357:498-502.doi: 10.1126/science.aam5336

26. Lobel, L.; Garrett, W. S. Take DAT, Flu! Immunity 2017;47:400-402. doi: 10.1016/j.immuni.2017.09.002

27. Dang, A.T.; Marsland, B. J. Microbes, Metabolites, and the Gut-Lung Axis. Mucosal Immunol. 2019;12:843-850 doi: 10.1038/s41385-019-0160-6.

28. Anand, S.; Mande, S. S. Diet, Microbiota and Gut-Lung Connection. Front. Microbiol. 2018; 9:2147. doi: 10.3389/fmicb.2018.02147.

29. Fernández, J.; Redondo-Blanco, S.; Gutiérrez-del-Río, I.; Miguélez, E.M.; Villar, C.J.; Lombó, F. Colon Microbiota Fermentation of Dietary Prebiotics towards Short-Chain Fatty Acids and Their Roles as Anti-Inflammatory and Antitumour Agents: A Review. J. Funct. Foods 2016; 25:511-522. doi: 10.3390/molecules25235542

30. Gou, W.; Fu, Y.; Yue, L.; et al. Gut Microbiota May Underlie the Predisposition of Healthy Individuals to COVID-19. medRxiv 2020. doi: 10.3390/microorganisms10020296

31. Dhar, D.; Mohanty, A. Gut Microbiota and Covid-19- Possible Link and Implications. Virus Res. 2020;285:198018. doi: 10.1016/j.virusres.2020.198018.

32. Zuo, T.; Zhang, F.; Lui, G.C.Y.; et al. Alterations in Gut Microbiota of Patients With COVID-19 During Time of Hospitalization. Gastroenterology 2020;159:944-955 doi: 10.1053/j.gastro.2020.05.048

33. Yeoh, Y.K.; Zuo, T.; Lui, G.C.-Y.; Zhang, F.; et al. Gut Microbiota Composition Reflects Disease Severity and Dysfunctional Immune Responses in Patients with COVID-19. Gut 2021;70:698-706. doi: 10.1136/gutjnl-2020-323020.

34. Sokol, H.; Contreras, V.; Maisonnasse, P.; et al. SARS-CoV-2 Infection in Nonhuman Primates Alters the Composition and Functional Activity of the Gut Microbiota. Gut Microbes 2021;13:1-19. doi: 10.1080/19490976.2021.1893113


Review

For citations:


Soldatova O.V., Goryanskaya I.Ya., Zaharyan E.A., Ivanchenko V.S. The conjugacy of the use of synbiotic Maxilac® with the severity and duration of the course of COVID-19 in outpatient treatment. Experimental and Clinical Gastroenterology. 2022;(11):86-93. (In Russ.) https://doi.org/10.31146/1682-8658-ecg-207-11-86-93

Views: 407


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1682-8658 (Print)