Preview

Experimental and Clinical Gastroenterology

Advanced search

Comparative assessment of the intestinal microbiota, lipid metabolism and morphological changes of the liver in experimental models of metabolic syndrome

https://doi.org/10.31146/1682-8658-ecg-203-7-158-164

Abstract

Metabolic syndrome (MS) is a widespread polyethiological clustering characterized by metabolic, hormonal disorders and clinical manifestations that significantly increase the risk of developing cardiovascular diseases, atherosclerosis, type II diabetes and other pathological conditions. An important role in the development of MS is assigned to the intestinal microbiota. To develop new therapeutic agents for correction of MS manifestations, it is necessary to develop adequate experimental models. In this paper, comparative studies were conducted to assess the parameters of lipid metabolism, the content of peptide hormones, morphological changes in liver tissue, and the quantitative and generic composition of the intestinal microbiota of mice. Experimental models of experimental hyperlipidemia (HL) caused by the introduction of poloxamer 407 (Pol407) and alimentary MS (a diet with fructose and the addition of cholesterol to the feed) were used. Significant increase in the levels of cholesterol, triglycerides, and low-density lipoprotein (LDL) was found in the group of mice treated with Pol407 injections. To assess the indicators of carbohydrate metabolism in blood serum, the following markers were determined: insulin, adiponectin, leptin. In the alimentary MS model a decrease in adiponectin in the blood serum, while insulin level was increased. In both experimental models, significant changes in the gut microbiota of mice were observed. They were associated with the manifestation of metabolic dysbiosis - an increase in the representation of Firmicutes (staphylococci, streptococci, enterococci) in the biomaterial, changes among representatives of both facultative (E. coli), and transient (Enterobacter bacteria) microflora. In addition, dystrophic, as well as morphological changes and signs of inflammation in the liver tissue were noted in both groups.

About the Authors

Tatiana N. Nikolaeva
Federal State Budgetary Institution “National Research Centre for Epidemiology and Microbiology named after the honorary academician N. F. Gamaleya” of the Ministry of Health of the Russian Federation
Russian Federation


Tatiana N. Kozhevnikova
Federal State Budgetary Institution “National Research Centre for Epidemiology and Microbiology named after the honorary academician N. F. Gamaleya” of the Ministry of Health of the Russian Federation
Russian Federation


Elena I. Vostrova
Federal State Budgetary Institution “National Research Centre for Epidemiology and Microbiology named after the honorary academician N. F. Gamaleya” of the Ministry of Health of the Russian Federation
Russian Federation


Olga Yu. Sosnovskaya
Federal State Budgetary Institution “National Research Centre for Epidemiology and Microbiology named after the honorary academician N. F. Gamaleya” of the Ministry of Health of the Russian Federation
Russian Federation


Ekaterina A. Grigorieva
Federal State Budgetary Institution “National Research Centre for Epidemiology and Microbiology named after the honorary academician N. F. Gamaleya” of the Ministry of Health of the Russian Federation
Russian Federation


Vyacheslav V. Kozlov
Federal State Budgetary Institution “National Research Centre for Epidemiology and Microbiology named after the honorary academician N. F. Gamaleya” of the Ministry of Health of the Russian Federation
Russian Federation


Alexei V. Vostrov
Federal State Budgetary Institution “National Research Centre for Epidemiology and Microbiology named after the honorary academician N. F. Gamaleya” of the Ministry of Health of the Russian Federation
Russian Federation


Maria A. Sarycheva
Federal State Budgetary Institution “National Research Centre for Epidemiology and Microbiology named after the honorary academician N. F. Gamaleya” of the Ministry of Health of the Russian Federation
Russian Federation


Aleksandr V. Sanin
Federal State Budgetary Institution “National Research Centre for Epidemiology and Microbiology named after the honorary academician N. F. Gamaleya” of the Ministry of Health of the Russian Federation
Russian Federation


Sergey B. Cheknev
Federal State Budgetary Institution “National Research Centre for Epidemiology and Microbiology named after the honorary academician N. F. Gamaleya” of the Ministry of Health of the Russian Federation
Russian Federation


Alexandr V. Pronin
Federal State Budgetary Institution “National Research Centre for Epidemiology and Microbiology named after the honorary academician N. F. Gamaleya” of the Ministry of Health of the Russian Federation
Russian Federation


References

1. Tajima R., Kimura T., Enomoto A., et al. No association between fruits or vegetables and non-alcoholic fatty liver disease in middle-aged men and women. Nutrition. 2019;(61):119-124. doi: 10.1016/j. nut.2018.10.016

2. Vona R., Gambardella L., Cittadini C., Straface E., Pietraforte D. Biomarkers of Oxidative Stress in Metabolic Syndrome and Associated Diseases. Oxid Med Cell Longev. 2019 May 5;2019:8267234. doi: 10.1155/2019/8267234

3. Zverev V. V., Maksimova O. V., Gervazieva V. B.Intestinal microbiota and its relationship with obesity. Infectious diseases. 2014;12(3):69-79. (in Russ.) @@Зверев В. В., Максимова О. В., Гервазиева В. Б. «Микробиота кишечника и ее связь с ожирением». Инфекционные болезни. 2014; 12(3):69-79

4. Chernin V. V., Parfenov A. I., Bondarenko V. M., Rybal’chenko O.V., Chervinec V. M. Symbiotic human digestion. Physiology. Clinic, diagnosis and treatment of its disorders. Tver. “Triada” 2013; 232. (in Russ.) @@Чернин В. В., Парфенов А. И., Бондаренко В. М., Рыбальченко О. В., Червинец В. М. Симбионтное пищеварение человека. Физиология.Клиника, диагностика и лечение его нарушений. Тверь «Триада» 2013; 232

5. Santacruz A., Collado M. C., Garcia-Valdes L., et al. Gut microbiota composition is associated with body weight, weight gain and biochemical parameters in pregnant women. Br. J. Nutr. 2010;104(1):83-92. doi:10.1017/S0007114510000176

6. Duerkop B. A., Vaishanava S., Hooper L. V. Immune responses to the intestinal mucosa surface. Immunity. 2009; 31(18):368-376. doi:10.1016/j.immuni.2009.08.009

7. Santos-Marcos J.A., Perez-Jimenez F., Camargo A. The role of diet and intestinal microbiota in the development of metabolic syndrome. J Nutr Biochem. 2019 Aug;70:1-27. doi: 10.1016/j.jnutbio.2019.03.017

8. Salikhova A. F., Farkhutdinova L. M. Immunological shifting in obesity and their relationship with disorders of carbohydrate metabolism. Medical Immunology. 2013.15 (5):465-470. (in Russ.)

9. Dov B Ballak, Rinke Stienstra, et al. IL-1 family members in the pathogenesis and treatment of metabolic disease: Focus on adipose tissue inflammation and insulin resistance. Cytokine. 2015. October; 75(2): 280-290. doi:10.1016/j.cyto.2015.05.005

10. Silvia de Barros-Mazon S., D. M. Marin, C.P. de Carvalho, S. M. Alegre. Inflammatory and Metabolic Markers in Preand PostTreatment of Obesity. Anti-Obesity Drug Discovery and Development. 2011; 1: 49-66 49. doi:10.2174/978160805163211101010049

11. Apryatin S. A., Mzhel’skaya K.V., Trusov N. V., et al.Comparative characteristics of in vivo models of hyperlipidemia in Wistar rats and c57bl/6 mice. Voprosy. pitaniya. 2016; (6): 14-23. (in Russ.) @@Апрятин С. А., Мжельская К. В., Трусов Н. В., Балакина А. С., Кулакова С. Н., Сото Х. С., Макаренко М. А., Ригер Н. А., Тутельян В. А. Сравнительная характеристика in vivo моделей гиперлипидемии у крыс линии Вистар и мышей линии c57bl/6. Вопросы. питания. 2016; (6): 14-23

12. Reshetnyak M. V., Hirmanov V. N., Zybina N. N., Frolova M.YU., Sakuta G. A., Kudryavcev B. N. Model of metabolic syndrome caused by fructose feeding: pathogenetic relationships of metabolic disorders. Medicinskij akademicheskij zhurnal. 2011;11(3):23-27. (in Russ.) @@Решетняк М. В., Хирманов В. Н., Зыбина Н. Н., Фролова М. Ю., Сакута Г. А., Кудрявцев Б. Н. Модель метаболического синдрома, вызванного кормлением фруктозой: патогенетические взаимосвязи обменных нарушений. Медицинский академический журнал. 2011;11(3):23-27

13. Mai B. H., Yan L. J. The negative and detrimental effects of high fructose on the liver, with special reference to metabolic disorders. Diabetes Metab Syndr Obes. 2019 May 27;12:821-826. doi: 10.2147/DMSO.S198968

14. Todoric J., Di Caro G, Karin M. Fructose stimulated de novo lipogenesis is promoted by inflammation. Nature Metabolism. 2020; (2):1034-1045. doi: 10.1038/s42255-020-0261-2

15. Johnston T. P. The P-407-induced murine model of dose-controlled hyperlipidemia and atherosclerosis: a review of findings to date. J. Cardiovasc. Pharmacol. 2004 Apr;43(4):595-606. doi: 10.1097/00005344-200404000-00016

16. Wout Z. G., Pec E. A., Maggiore J. A., Williams R. H., Palicharla P., Johnston T. P. Poloxamer 407-mediated changes in plasma cholesterol and triglycerides following intraperitoneal injection to rats. J. Parenter. Sci. Technol. 1992;46(6):192-200. PMID: 1474430

17. Palmer W. K., Emeson E. E., Johnston T. P. Poloxamer 407-induced atherogenesis in the C57BL/6 mouse. Atherosclerosis. 1998 Jan;136(1):115-23. doi: 10.1016/s0021-9150(97)00193-7

18. Leon C., et al. Acute P-407 administration to mice causes hypercholesterolemia by inducing cholesterolgenesis and down-regulating low-density lipoprotein receptor expression. Pharm Res. 2006;23(7):1597-1607. doi:10.1007/s11095-006-0276-8

19. Loginova V. M., Tuzikov F. V., Tuzikova N. A., et al. Effect of poloxamer 407 on the fractional and subfractional composition of lipoproteins in the blood serum of mice. Byulleten’ SORAMN. 2010;30(5):70-75. (in Russ.) @@Логинова В. М., Тузиков Ф. В., Тузикова Н. А., Филюшина Е. Е., Савченко Н. Г., Ясакова Н. Т., Гончарова И. А., Короленко Т. А. Влияние полоксамера 407 на фракционный и субфракционный состав липопротеинов сыворотки крови мышей Бюллетень СОРАМН. 2010;30(5):70-75

20. Aijala M., Malo E., Ukkola O., et al. Long-term fructose feeding changes the expression of leptin receptors and autophagy genes in the adipose tissue and liver of male rats: a possible link to elevated triglycerides. Genes Nutr. 2013;8(6):623-635. doi: 10.1007/s12263-013-0357-3

21. Tajima R., Kimura T., Enomoto A., et al. No association between fruits or vegetables and non-alcoholic fatty liver disease in middle-aged men and women. Nutrition. 2019; 61: 119-124. doi: 10.1016/j. nut.2018.10.016

22. Johnston T. P., Jaye M., Webb C. L., Krawiec J. A., Alom-Ruiz S.P., Sachs-Barrable K., Wasan K. M. Poloxamer 407 (P-407)-mediated reduction in the gene expression of ATP-binding-cassette transporter A1 may contribute to increased cholesterol in peripheral tissues of P-407-treated rats. Eur. J. Pharmacol. 2006;536(3):232-240. doi: 10.1016/j.ejphar.2006.03.019

23. Sakar Y., Nazaret C., Letteron P., et al. Positive regulatory control loop between gut leptin and intestinal GLUT2/GLUT5 transporters links to hepatic metabolic functions in rodents. PLoS One. 2009; 4(11): e7935. doi: 10.1371/journal.pone.0007935

24. Murdolo G., Smith U. The dysregulated adipose tissue: A connecting link between insulin resistance type 2 diabetes mellitus and atherosclerosis. Nutrition, Metabolism & Cardiovascular Diseases. 2006; 16: 35-8. doi: 10.1016/j.numecd.2005.10.016

25. Yao H., Fan.C., Lu Y, Fan X., X.L., Li P., Wang R., Tang T., Wang Y., Qi K. Alteration of gut microbiota affects expression of adiponectin and resistin though modifying DNA methyolation in high-fat diet-induced obese mice. Genes & Nutrition. 2020 Jun 26;15(1):12. doi: 10.1186/s12263-020-00671-3

26. Nikolaeva T. N., Zorina V. V., Bondarenko V. M. Immunostimuliruiushchaia i antikantserogennaia aktivnost’ normal’noĭ laktoflory kishechnika [Immunostimulating and anti-carcinogenic activity of the normal intestinal lactoflora]. Eksp Klin Gastroenterol. 2004;(4):39-43, 109.Russian. PMID: 15568667. @@Николаева Т. Н., Зорина В. М., Бондаренко В. М. «Иммуностимулирующая и антиканцерогенная активность нормальной микрофлоры кишечника» Экспериментальная и клиническая гастроэнтерология. 2004;(2):39-43


Review

For citations:


Nikolaeva T.N., Kozhevnikova T.N., Vostrova E.I., Sosnovskaya O.Yu., Grigorieva E.A., Kozlov V.V., Vostrov A.V., Sarycheva M.A., Sanin A.V., Cheknev S.B., Pronin A.V. Comparative assessment of the intestinal microbiota, lipid metabolism and morphological changes of the liver in experimental models of metabolic syndrome. Experimental and Clinical Gastroenterology. 2022;(7):158-164. (In Russ.) https://doi.org/10.31146/1682-8658-ecg-203-7-158-164

Views: 420


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1682-8658 (Print)