Особенности дыхательных тестов (водород + метан), данных непрямой эластометрии печени у реконвалесцентов COVID-19
https://doi.org/10.31146/1682-8658-ecg-203-7-131-144
Аннотация
Об авторах
Маргарита Витальевна КручининаРоссия
Ирина Олеговна Светлова
Россия
Ирина Ивановна Логвиненко
Россия
Андрей Александрович Громов
Россия
Елена Владимировна Каштанова
Россия
Наталия Евгеньевна Пономарева
Россия
Элина Владимировна Кручинина
Россия
Список литературы
1. Zhang C., Shi L., Wang F. S. Liver injury in COVID-19: management and challenges. Lancet Gastroenterol Hepatol. 2020; 5 (5): 428- 430. doi: 10.1016/S2468-1253(20)30057-1
2. Ivashkin V. T., Sheptulin A. A., Zolnikova O. Yu.et al. New Coronavirus Infection (COVID-19) and Digestive System.Russian Journal of Gastroenterology, Hepatology, Coloproctology. 2020;30(3):7-13. (In Russ.) doi:10.22416/1382-4376-2020-30-3-7 @@Ивашкин В. Т., Шептулин А. А., Зольникова О. Ю. и соавт. Новая коронавирусная инфекция (COVID-19) и система органов пищеварения. Российский журнал гастроэнтерологии, гепатологии, колопроктологии. 2020;30(3):7-13. doi:10.22416/1382-4376-2020-30-3-7
3. Pan L., Mu M., Ren H. G., et al. Clinical characteristics of COVID-19 patients with digestive symptoms in Hubei, China: a descriptive, cross-sectional, multicenter study. Am J Gastroenterol, 2020;115(5):766-73. doi: 10.14309/ ajg.0000000000000620
4. Ungaro R.C., Sullivan T., Colombel J. F., et al. What should gastroenterologists and patients know about COVID-19? Clin Gastroenterol Hepatol. 2020;18(7):1409-11. doi: 10.1016/j.cgh2020.03.020
5. Jin X., Lian J. S., Hu J. H., et al. Epidemiological, clinical and virological characteristics of 74 cases of coronavirus-infected disease 2019 (COVID-19) with gastrointestinal symptoms. Gut. 2020;69(6):1002-09. doi:10.1136/gutjnl-2020-320926
6. Xiao F., Tang M., Zheng X., et al. Evidence for gastrointestinal infection of SARS-CoV-2. Gastroenterology. 2020; 158(6):1831-33. doi:10.1053/j.gastro.2020.02.055
7. Lu R., Zhao X., Li J., et al. Genomic characterization and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. Lancet. 2020; 395(10224):565-74. doi: 1016/ S0140-6736(20)30251-8
8. Zhou P., Yang X. L., Wang X. G., et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature. 2020; 579(7798):270-273. doi: 10.1038/s41586-020-2012-7
9. Liang W., Feng Z., Rao S., et al. Diarrhea may be underestimated: a missing link in 2019 novel coronavirus. Gut. 2020;69(6):1141-43. doi: 10.1136/gutjnl-2020-320832
10. Wu Y., Guo C., Tang L., et al. Prolonged presence of SARS-CoV-2 viral RNA in faecal samples. Lancet Gastroenterol Hepatol. 2020;5(5):434-35. doi: 10.1016/S2468-1253(20)30083-2
11. Song Y., Liu P., Shi X. L., et al. SARS-CoV-2 induced diarrhea as onset symptom in patient with COVID-19. Gut. 2020;69(6):1143-44. doi: 10.1136/gutjnl-2020-320891
12. Nardo A.D., Schneeweiss-Gleixner M., Bakail M., et al. Pathophysiological mechanisms of liver injury in COVID-19. Liver Int. 2021;41:20-32. doi:10.1111/liv.14730
13. Sonzogni A., Previtali G., Seghezzi M., et al. Liver histopathology in severe COVID 19 respiratory failure is suggestive of vascular alterations. Liver Int. 2020;40(9):2110-2116. doi: 10.1111/liv.14601
14. Effenberger M., Grander C., Fritsche G., et al. Liver stiffness by transient elastography accompanies illness severity in COVID-19. BMJ Open Gastro. 2020;7: e000445. doi:10.1136/bmjgast-2020-000445
15. Chai X., Hu L., Zhang Y., et al. Specific ACE2 Expression in Cholangiocytes May Cause Liver Damage After 2019-nCoV Infection. bioRxiv. 2020. doi: 10.1101/2020.02.03.931766
16. Xu J., Helfand B. Genetic risk score linked with younger age diagnosis of prostate cancer. Oncology Times. 2020;42(6):8,36. doi: 10.1097/01.COT.0000658832.18056.12
17. Hashimoto T., Perlot T., Rehman A., et al. ACE2 links amino acid malnutrition to microbial ecology and intestinal inflammation. Nature. 2012;487(7408):477-481. doi:10.1038/nature11228
18. Trottein F., Sokol H. Potential Causes and Consequences of Gastrointestinal Disorders during a SARS-CoV-2 Infection. Cell Rep. 2020;32(3):107915. doi: 10.1016/j.celrep.2020.107915
19. Bradley K.C., Finsterbusch K., Schnepf D., et al. Microbiota-Driven Tonic Interferon Signals in Lung Stromal Cells Protect from Influenza Virus Infection. Cell Rep. 2019;28(1):245-256.e4. doi: 10.1016/j.celrep.2019.05.105
20. Compare D., Coccoli P., Rocco A., et al. Gut-liver axis: the impact of gut microbiota on nonalcoholic fatty liver disease. Nutr Metab Cardiovasc Dis. 2012 Jun;22(6):471-6. doi: 10.1016/j.numecd.2012.02.007
21. Quigley E.M., Stanton C., Murphy E. F. The gut microbiota and the liver. Pathophysiological and clinical implications. J Hepatol. 2013;58(5):1020-7. doi: 10.1016/j.jhep.2012.11.023
22. Eckburg P.B., Bik E. M., Bernstein C. N., et al. Diversity of the human intestinal microbial flora. Science. 2005;308(5728):1635-1638. doi:10.1126/science.1110591
23. Abu-Shanab A., Quigley E. M. The role of the gut microbiota in nonalcoholic fatty liver disease. Nat Rev Gastroenterol Hepatol. 2010;7(12):691-701. doi: 10.1038/nrgastro.2010.172
24. Vanner S. The small intestinal bacterial overgrowth. Irritable bowel syndrome hypothesis: implications for treatment. Gut. 2008 Sep;57(9):1315-21. doi: 10.1136/gut.2007.133629.
25. Terjung B., Söhne J., Lechtenberg B., et al. p-ANCAs in autoimmune liver disorders recognise human beta-tubulin isotype 5 and cross-react with microbial protein FtsZ. Gut. 2010;59(6):808-16. doi: 10.1136/gut.2008.157818
26. [Temporary guidelines of the Ministry of Health of the Russian Federation. Prevention, diagnosis and treatment of new coronavirus infection (COVID-19)]. Moscow. Version 4 (03/27/2020). Moscow. 2020. 12 p. (in Russ.) @@Временные методические рекомендации «Профилактика, диагностика и лечение новой коронавирусной инфекции (COVID-19)». Версия 4 от 27.03.2020. - Текст: непосредственный.-М., 2020. - 12 с.
27. [Temporary guidelines of the Ministry of Health of the Russian Federation. Prevention, diagnosis and treatment of new coronavirus infection (COVID-19)]. Moscow. Version 7 (06/23/2020). Moscow. 2020. pp. 137-139. (in Russ.) @@Временные методические рекомендации «Профилактика, диагностика и лечение новой коронавирусной инфекции (COVID-19)». Версия 7 от 23.06.2020. - Текст: непосредственный.-М., 2020. - 166 с.
28. Demirtas C.O., Yilmaz Y. Metabolic-associated Fatty Liver Disease: Time to integrate ground-breaking new terminology to our clinical practice? Hepatology Forum. 2020; 1(3):79-81. doi: 10.14744/hf.2020.2020.0024
29. Portincasa P., Krawczyk M., Smyk W., Lammert F., Di Ciaula A. COVID-19 and non-alcoholic fatty liver disease: Two intersecting pandemics. Eur J Clin Invest. 2020;50(10): e13338. doi: 10.1111/eci.13338
30. {Clinical laboratory diagnostics: national guidelines]. edd. Dolgova V. V., Menshikov V. V. Moscow. GEOTAR - Media Publ., 2021. 928 p. (in Russ.) @@Клиническая лабораторная диагностика: национальное руководство: в 2 т. - Т. 1 / под ред. В. В. Долгова, В. В. Меньшикова. - М.: ГЭОТАР - Медиа, 2021. -928 с.
31. Kulkarni A.V., Kumar P., Tevethia H. V., et al. Systematic review with meta-analysis: liver manifestations and outcomes in COVID-19. Aliment Pharmacol Ther. 2020;52(4):584-599. doi:10.1111/apt.15916
32. Yadav D.K., Singh A., Zhang Q., et al. Involvement of liver in COVID-19: systematic review and meta-analysis. Gut. 2021;70(4):807-809. doi: 10.1136/gutjnl-2020-322072
33. Parasa S., Desai M., Thoguluva Chandrasekar V., et al. Prevalence of Gastrointestinal Symptoms and Fecal Viral Shedding in Patients With Coronavirus Disease 2019: A Systematic Review and Meta-analysis. JAMA Netw Open. 2020;3(6): e2011335. doi:10.1001/jamanetworkopen.2020.11335
34. Kumar-M.P., Mishra S., Jha D. K., et al. Coronavirus disease (COVID-19) and the liver: a comprehensive systematic review and meta-analysis. Hepatol Int. 2020;14(5):711-722. doi: 10.1007/s12072-020-10071-9
35. Xu L., Liu J., Lu M., et al. Liver injury during highly pathogenic human coronavirus infections. Liver Int. 2020 May;40(5):998-1004. doi: 10.1111/liv.14435
36. Huang C., Wang Y., Li X., et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020;395(10223):497-506. doi: 10.1016/S0140-6736(20)30183-5
37. Bernal-Monterde V., Casas-Deza D., Letona-Giménez L., et al. SARS-CoV-2 Infection Induces a Dual Response in Liver Function Tests: Association with Mortality during Hospitalization. Biomedicines. 2020;8(9):328. doi:10.3390/biomedicines8090328
38. Sun J., Aghemo A., Forner A., Valenti L. COVID-19 and liver disease. Liver Int. 2020;40(6):1278-1281. doi: 10.1111/liv.14470. PMID: 32251539.
39. Varga Z., Flammer A. J., Steiger P., et al. Endothelial cell infection and endotheliitis in COVID-19. Lancet. 2020;395(10234):1417-1418. doi: 10.1016/S0140-6736(20)30937-5
40. Boettler T., Newsome P. N., Mondelli M. U., et al. Care of patients with liver disease during the COVID-19 pandemic: EASL- ESCMID position paper. JHEP Rep. 2020;2(3):100113. doi:10.1016/j.jhepr.2020.100113
41. Ong J., Young B. E., Ong S. COVID-19 in gastroenterology: a clinical perspective. Gut. 2020;69(6):1144-45. doi: 10.1136/gutjnl-2020-321051
42. Xu Z., Shi L., Wang Y., et al. Patholigical findings of COVID-19 associated with acute respiratory distress syndrome. Lancet Respir Med. 2020; 8(4):420-2. doi: 10.1016/S2213-2600(20)30076-X
43. Zhou F., Yu T., Du R., et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet.2020;395(10229):1054-62. doi:10.1016/S0140-6736(20)30566-3
44. Yip T.C., Lui G. C., Wong V. W., et al. Liver injury is independently associated with adverse clinical outcomes in patients with COVID-19. Gut. 2021;70(4):733-742. doi: 10.1136/gutjnl-2020-321726
45. Ferraioli G., Filice C., Castera L. WFUMB guidelines and recommendations for clinical use of ultrasound elastography: Part 3: liver. Ultrasound Med Biol. 2015;41(5):1161-79. doi: 10.1016/j.ultrasmedbio.2015.03.007
46. Kaur G., Sandeep F., Olayinka O., Gupta G. Morphologic Changes in Circulating Blood Cells of COVID-19 Patients. Cureus. 2021;13(2): e13416. doi:10.7759/cureus.13416
47. Nazarullah A., Liang C., Villarreal A., et al. Peripheral Blood Examination Findings in SARS-CoV-2 Infection. Am J Clin Pathol. 2020;154(3):319-329. doi: 10.1093/ajcp/aqaa108
48. Pozdnyakova O., Connell N. T., Battinelli E. M., et al. Clinical Significance of CBC and WBC Morphology in the Diagnosis and Clinical Course of COVID-19 Infection. Am J Clin Pathol. 2021;155(3):364-375. doi: 10.1093/ajcp/aqaa231
49. Levitt M. D. Production and excretion of hydrogen gas in man. N Engl J Med. 1969;281(3):122-7. doi: 10.1056/NEJM196907172810303
50. Pimentel M., Saad R. J., Long M. D., Rao S. S.C. ACG Clinical Guideline: Small Intestinal Bacterial Overgrowth. Am J Gastroenterol. 2020;115(2):165-78. doi: 10.14309/ajg.0000000000000501
51. Quigley E.M.M., Murray J. A., Pimentel M. AGA Clinical Practice Update on Small Intestinal Bacterial Overgrowth: Expert Review. Gastroenterology. 2020;159(4):1526-1532. doi: 10.1053/j.gastro.2020.06.090
52. Chatterjee S., Park S., Low K., et al. The degree of breath methane production in IBS correlates with the severity of constipation. Am J Gastroenterol. 2007 Apr;102(4):837-41. doi: 10.1111/j.1572-0241.2007.01072.x
53. Bratten J.R., Jones M. P. Small intestinal motility. Curr Opin Gastroenterol. 2007;23(2):127-33. doi: 10.1097/MOG.0b013e32801424f3
54. Kim S., Covington A., Pamer E. G. The intestinal microbiota: Antibiotics, colonization resistance, and enteric pathogens. Immunol Rev. 2017;279(1):90-105. doi:10.1111/imr.12563
55. Zuo T., Ng S. C. The Gut Microbiota in the Pathogenesis and Therapeutics of Inflammatory Bowel Disease. Front Microbiol. 2018;9:2247. doi: 10.3389/fmicb.2018.02247
56. Yeoh Y.K., Zuo T., Lui G. C., et al. Gut microbiota composition reflects disease severity and dysfunctional immune responses in patients with COVID-19. Gut. 2021;70(4):698-706. doi: 10.1136/gutjnl-2020-323020
57. Zuo T., Zhang F., Lui G. C.Y., et al. Alterations in Gut Microbiota of Patients With COVID-19 During Time of Hospitalization. Gastroenterology. 2020;159(3):944-955.e8. doi: 10.1053/j.gastro.2020.05.048
58. Drapkina O. M., Gambaryan M. G., Gorny B. E., et al. Health promotion and prevention of chronic non-communicable diseases in the context of the COVID-19 pandemic. Consensus of experts of the National society of evidence-based pharmacotherapy and the Russian society of the prevention of non-communicable diseases. Cardiovascular Therapy and Prevention. 2020;19(3):2605. (In Russ.) doi:10.15829/1728-8800-2020-2605 @@Драпкина О. М., Гамбарян М. Г., Горный Б. Э. и соавт. Укрепление здоровья и профилактика хронических неинфекционных заболеваний в условиях пандемии и самоизоляции. Консенсус экспертов Национального медицинского исследовательского центра терапии и профилактической медицины и Российского общества профилактики неинфекционных заболеваний. Кардиоваскулярная терапия и профилактика. 2020;19(3):2605. doi:10.15829/1728-8800-2020-2605
59. Osipenko M. F., Bikbulatova E. A., Kholin S. I. Prevention and therapy of antibiotic-associated diarrhea: place of probiotics. Meditsinskiy sovet = Medical Council. 2017;(11):104-106. (In Russ.) doi:10.21518/2079-701X-2017-11-104-106 @@Осипенко М. Ф., Бикбулатова Е. А., Холин С. И. Профилактика и лечение антибиотико-ассоциированной диареи: место пробиотиков. Медицинский Совет. 2017;(11):104-106. doi:10.21518/2079-701X-2017-11-104-106
60. Chernikov V. V., Surkov A. N. Antibiotic-associated diarrhea in children: principles of prophylaxis and treatment. Current Pediatrics. 2012;11(2):48-55. (In Russ.) doi:10.15690/vsp.v11i2.210 @@Черников В. В., Сурков А. Н. Антибиотик-ассоциированная диарея у детей: принципы профилактики и лечения. Вопросы современной педиатрии. 2012;11(2):48-55. doi:10.15690/vsp.v11i2.210
61. Gu S., Chen Y., Wu Z., et al. Alterations of the Gut Microbiota in Patients With Coronavirus Disease 2019 or H1N1 Influenza. Clin Infect Dis. 2020;71(10):2669-2678. doi: 10.1093/cid/ciaa709
Рецензия
Для цитирования:
Кручинина М.В., Светлова И.О., Логвиненко И.И., Громов А.А., Каштанова Е.В., Пономарева Н.Е., Кручинина Э.В. Особенности дыхательных тестов (водород + метан), данных непрямой эластометрии печени у реконвалесцентов COVID-19. Экспериментальная и клиническая гастроэнтерология. 2022;(7):131-144. https://doi.org/10.31146/1682-8658-ecg-203-7-131-144
For citation:
Kruchinina M.V., Svetlova I.O., Logvinenko I.I., Gromov A.A., Kashtanova E.V., Ponomareva N.E., Kruchinina E.V. Features of respiratory tests (hydrogen + methane), indirect liver elastometry data in COVID-19 convalescents (pilot study). Experimental and Clinical Gastroenterology. 2022;(7):131-144. (In Russ.) https://doi.org/10.31146/1682-8658-ecg-203-7-131-144