Preview

Экспериментальная и клиническая гастроэнтерология

Расширенный поиск

Особенности дыхательных тестов (водород + метан), данных непрямой эластометрии печени у реконвалесцентов COVID-19

https://doi.org/10.31146/1682-8658-ecg-203-7-131-144

Аннотация

Цель исследования: изучить показатели эластичности печени, уровни водорода и метана в выдыхаемом воздухе, их ассоциации с клинико-биохимическими показателями у пациентов, перенесших COVID-19. Материалы и методы. Обследовано 30 пациентов (средний возраст 51,8±2,91), перенесших COVID-19 (подтвержден тестом на РНК SARS-CoV-2 или наличием антигена SARS-CoV-2) через 12-16 недель после появления первых симптомов, из них у 11 была выявлена пневмония. 19 человек (средний возраст 47,1±3,09), не перенесшие COVID-19, составили группу сравнения. Пациентам выполнено клинико-биохимическое исследование, определена степень фиброза печени (FibroScan® 502 Echosens, Франция), проведено измерение уровней водорода (H2) и метана (CH4) в выдыхаемом воздухе (базисное и после приема раствора лактулозы) (GastroCheck Gastrolyzer, Bedfont Scientific Ltd., England). Результаты. Перенесенная инфекция COVID-19 прямо коррелировала с возрастом (r=0,331, p=0,022), мужским полом (r=0,324, p=0,025), наличием фиброза печени (r=0,291, p=0,044). Пациенты, перенесшие COVID-19, чаще имели фиброз печени (p<0,001) и более высокие значения эластичности печени в кПа (p=0,018) на фоне избыточной массы тела и ожирения (63,3%) и повышенного индекса массы тела (p=0,03) по сравнению с группой контроля. Наличие фиброза печени ассоциировано с перенесенной пневмонией средней степени тяжести (p<0,001). Среди перенесших COVID-19 достоверно больше не-продуцентов метана (p=0,02), меньше лиц со средним уровнем метана в выдыхаемом воздухе (p=0,016). У реконвалесцентов COVID-19 реже выявлялся синдром избыточного бактериального роста (СИБР) по сравнению с контролем (p=0,04), но чаще регистрировались признаки замедленного транзита по кишечнику (p<0,05). Наличие фиброза печени у перенесших COVID-19 ассоциировано с выявлением СИБР (23,3% против 5,2%, p<0,001), который, вероятно, вносит вклад в патогенез повреждения печени. Уровни водорода через 120 мин и метана через 60 мин после приема раствора лактулозы различали реконвалесцентов COVID-19 и не перенесших COVID-19 с AUC 0,683 и 0,660, соответственно. Выявлены ассоциации уровней газов в выдыхаемом воздухе с клинико-биохимическими показателями: наличие избыточной массы тела и ожирения обнаружило обратные ассоциации с уровнем продукции метана (r= -0,342, p<0,05), его концентрацией после приема лактулозы в различные временные промежутки, а также базисным уровнем водорода (r= -0,313, p<0,05); степень ожирения также обратно коррелировала с уровнем выделения метана (r= -0,368, p=0,038). Установлены прямые связи между показателями эластичности печени в кПа и уровнем продукции водорода (r=0,275, p<0,05). Выводы. Получены косвенные признаки выраженных изменений в кишечном микробиоме, которые, очевидно, вносят вклад в более тяжелое течение COVID-19, развитие фиброза печени, поэтому воздействие на кишечную микрофлору может рассматриваться как потенциальный таргет при лечении пациентов с COVID-19.

Об авторах

Маргарита Витальевна Кручинина
Научно-исследовательский институт терапии и профилактической медицины - филиал Федерального государственного бюджетного научного учреждения «Федеральный исследовательский центр Институт цитологии и генетики Сибирского отделения Российской академии наук»; ФГБОУ Новосибирский государственный медицинский университет Минздрава России
Россия


Ирина Олеговна Светлова
Научно-исследовательский институт терапии и профилактической медицины - филиал Федерального государственного бюджетного научного учреждения «Федеральный исследовательский центр Институт цитологии и генетики Сибирского отделения Российской академии наук»; ФГБОУ Новосибирский государственный медицинский университет Минздрава России
Россия


Ирина Ивановна Логвиненко
Научно-исследовательский институт терапии и профилактической медицины - филиал Федерального государственного бюджетного научного учреждения «Федеральный исследовательский центр Институт цитологии и генетики Сибирского отделения Российской академии наук»; ФГБОУ Новосибирский государственный медицинский университет Минздрава России
Россия


Андрей Александрович Громов
Научно-исследовательский институт терапии и профилактической медицины - филиал Федерального государственного бюджетного научного учреждения «Федеральный исследовательский центр Институт цитологии и генетики Сибирского отделения Российской академии наук»
Россия


Елена Владимировна Каштанова
Научно-исследовательский институт терапии и профилактической медицины - филиал Федерального государственного бюджетного научного учреждения «Федеральный исследовательский центр Институт цитологии и генетики Сибирского отделения Российской академии наук»
Россия


Наталия Евгеньевна Пономарева
Научно-исследовательский институт терапии и профилактической медицины - филиал Федерального государственного бюджетного научного учреждения «Федеральный исследовательский центр Институт цитологии и генетики Сибирского отделения Российской академии наук»
Россия


Элина Владимировна Кручинина
ФГБОУ Новосибирский государственный медицинский университет Минздрава России
Россия


Список литературы

1. Zhang C., Shi L., Wang F. S. Liver injury in COVID-19: management and challenges. Lancet Gastroenterol Hepatol. 2020; 5 (5): 428- 430. doi: 10.1016/S2468-1253(20)30057-1

2. Ivashkin V. T., Sheptulin A. A., Zolnikova O. Yu.et al. New Coronavirus Infection (COVID-19) and Digestive System.Russian Journal of Gastroenterology, Hepatology, Coloproctology. 2020;30(3):7-13. (In Russ.) doi:10.22416/1382-4376-2020-30-3-7 @@Ивашкин В. Т., Шептулин А. А., Зольникова О. Ю. и соавт. Новая коронавирусная инфекция (COVID-19) и система органов пищеварения. Российский журнал гастроэнтерологии, гепатологии, колопроктологии. 2020;30(3):7-13. doi:10.22416/1382-4376-2020-30-3-7

3. Pan L., Mu M., Ren H. G., et al. Clinical characteristics of COVID-19 patients with digestive symptoms in Hubei, China: a descriptive, cross-sectional, multicenter study. Am J Gastroenterol, 2020;115(5):766-73. doi: 10.14309/ ajg.0000000000000620

4. Ungaro R.C., Sullivan T., Colombel J. F., et al. What should gastroenterologists and patients know about COVID-19? Clin Gastroenterol Hepatol. 2020;18(7):1409-11. doi: 10.1016/j.cgh2020.03.020

5. Jin X., Lian J. S., Hu J. H., et al. Epidemiological, clinical and virological characteristics of 74 cases of coronavirus-infected disease 2019 (COVID-19) with gastrointestinal symptoms. Gut. 2020;69(6):1002-09. doi:10.1136/gutjnl-2020-320926

6. Xiao F., Tang M., Zheng X., et al. Evidence for gastrointestinal infection of SARS-CoV-2. Gastroenterology. 2020; 158(6):1831-33. doi:10.1053/j.gastro.2020.02.055

7. Lu R., Zhao X., Li J., et al. Genomic characterization and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. Lancet. 2020; 395(10224):565-74. doi: 1016/ S0140-6736(20)30251-8

8. Zhou P., Yang X. L., Wang X. G., et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature. 2020; 579(7798):270-273. doi: 10.1038/s41586-020-2012-7

9. Liang W., Feng Z., Rao S., et al. Diarrhea may be underestimated: a missing link in 2019 novel coronavirus. Gut. 2020;69(6):1141-43. doi: 10.1136/gutjnl-2020-320832

10. Wu Y., Guo C., Tang L., et al. Prolonged presence of SARS-CoV-2 viral RNA in faecal samples. Lancet Gastroenterol Hepatol. 2020;5(5):434-35. doi: 10.1016/S2468-1253(20)30083-2

11. Song Y., Liu P., Shi X. L., et al. SARS-CoV-2 induced diarrhea as onset symptom in patient with COVID-19. Gut. 2020;69(6):1143-44. doi: 10.1136/gutjnl-2020-320891

12. Nardo A.D., Schneeweiss-Gleixner M., Bakail M., et al. Pathophysiological mechanisms of liver injury in COVID-19. Liver Int. 2021;41:20-32. doi:10.1111/liv.14730

13. Sonzogni A., Previtali G., Seghezzi M., et al. Liver histopathology in severe COVID 19 respiratory failure is suggestive of vascular alterations. Liver Int. 2020;40(9):2110-2116. doi: 10.1111/liv.14601

14. Effenberger M., Grander C., Fritsche G., et al. Liver stiffness by transient elastography accompanies illness severity in COVID-19. BMJ Open Gastro. 2020;7: e000445. doi:10.1136/bmjgast-2020-000445

15. Chai X., Hu L., Zhang Y., et al. Specific ACE2 Expression in Cholangiocytes May Cause Liver Damage After 2019-nCoV Infection. bioRxiv. 2020. doi: 10.1101/2020.02.03.931766

16. Xu J., Helfand B. Genetic risk score linked with younger age diagnosis of prostate cancer. Oncology Times. 2020;42(6):8,36. doi: 10.1097/01.COT.0000658832.18056.12

17. Hashimoto T., Perlot T., Rehman A., et al. ACE2 links amino acid malnutrition to microbial ecology and intestinal inflammation. Nature. 2012;487(7408):477-481. doi:10.1038/nature11228

18. Trottein F., Sokol H. Potential Causes and Consequences of Gastrointestinal Disorders during a SARS-CoV-2 Infection. Cell Rep. 2020;32(3):107915. doi: 10.1016/j.celrep.2020.107915

19. Bradley K.C., Finsterbusch K., Schnepf D., et al. Microbiota-Driven Tonic Interferon Signals in Lung Stromal Cells Protect from Influenza Virus Infection. Cell Rep. 2019;28(1):245-256.e4. doi: 10.1016/j.celrep.2019.05.105

20. Compare D., Coccoli P., Rocco A., et al. Gut-liver axis: the impact of gut microbiota on nonalcoholic fatty liver disease. Nutr Metab Cardiovasc Dis. 2012 Jun;22(6):471-6. doi: 10.1016/j.numecd.2012.02.007

21. Quigley E.M., Stanton C., Murphy E. F. The gut microbiota and the liver. Pathophysiological and clinical implications. J Hepatol. 2013;58(5):1020-7. doi: 10.1016/j.jhep.2012.11.023

22. Eckburg P.B., Bik E. M., Bernstein C. N., et al. Diversity of the human intestinal microbial flora. Science. 2005;308(5728):1635-1638. doi:10.1126/science.1110591

23. Abu-Shanab A., Quigley E. M. The role of the gut microbiota in nonalcoholic fatty liver disease. Nat Rev Gastroenterol Hepatol. 2010;7(12):691-701. doi: 10.1038/nrgastro.2010.172

24. Vanner S. The small intestinal bacterial overgrowth. Irritable bowel syndrome hypothesis: implications for treatment. Gut. 2008 Sep;57(9):1315-21. doi: 10.1136/gut.2007.133629.

25. Terjung B., Söhne J., Lechtenberg B., et al. p-ANCAs in autoimmune liver disorders recognise human beta-tubulin isotype 5 and cross-react with microbial protein FtsZ. Gut. 2010;59(6):808-16. doi: 10.1136/gut.2008.157818

26. [Temporary guidelines of the Ministry of Health of the Russian Federation. Prevention, diagnosis and treatment of new coronavirus infection (COVID-19)]. Moscow. Version 4 (03/27/2020). Moscow. 2020. 12 p. (in Russ.) @@Временные методические рекомендации «Профилактика, диагностика и лечение новой коронавирусной инфекции (COVID-19)». Версия 4 от 27.03.2020. - Текст: непосредственный.-М., 2020. - 12 с.

27. [Temporary guidelines of the Ministry of Health of the Russian Federation. Prevention, diagnosis and treatment of new coronavirus infection (COVID-19)]. Moscow. Version 7 (06/23/2020). Moscow. 2020. pp. 137-139. (in Russ.) @@Временные методические рекомендации «Профилактика, диагностика и лечение новой коронавирусной инфекции (COVID-19)». Версия 7 от 23.06.2020. - Текст: непосредственный.-М., 2020. - 166 с.

28. Demirtas C.O., Yilmaz Y. Metabolic-associated Fatty Liver Disease: Time to integrate ground-breaking new terminology to our clinical practice? Hepatology Forum. 2020; 1(3):79-81. doi: 10.14744/hf.2020.2020.0024

29. Portincasa P., Krawczyk M., Smyk W., Lammert F., Di Ciaula A. COVID-19 and non-alcoholic fatty liver disease: Two intersecting pandemics. Eur J Clin Invest. 2020;50(10): e13338. doi: 10.1111/eci.13338

30. {Clinical laboratory diagnostics: national guidelines]. edd. Dolgova V. V., Menshikov V. V. Moscow. GEOTAR - Media Publ., 2021. 928 p. (in Russ.) @@Клиническая лабораторная диагностика: национальное руководство: в 2 т. - Т. 1 / под ред. В. В. Долгова, В. В. Меньшикова. - М.: ГЭОТАР - Медиа, 2021. -928 с.

31. Kulkarni A.V., Kumar P., Tevethia H. V., et al. Systematic review with meta-analysis: liver manifestations and outcomes in COVID-19. Aliment Pharmacol Ther. 2020;52(4):584-599. doi:10.1111/apt.15916

32. Yadav D.K., Singh A., Zhang Q., et al. Involvement of liver in COVID-19: systematic review and meta-analysis. Gut. 2021;70(4):807-809. doi: 10.1136/gutjnl-2020-322072

33. Parasa S., Desai M., Thoguluva Chandrasekar V., et al. Prevalence of Gastrointestinal Symptoms and Fecal Viral Shedding in Patients With Coronavirus Disease 2019: A Systematic Review and Meta-analysis. JAMA Netw Open. 2020;3(6): e2011335. doi:10.1001/jamanetworkopen.2020.11335

34. Kumar-M.P., Mishra S., Jha D. K., et al. Coronavirus disease (COVID-19) and the liver: a comprehensive systematic review and meta-analysis. Hepatol Int. 2020;14(5):711-722. doi: 10.1007/s12072-020-10071-9

35. Xu L., Liu J., Lu M., et al. Liver injury during highly pathogenic human coronavirus infections. Liver Int. 2020 May;40(5):998-1004. doi: 10.1111/liv.14435

36. Huang C., Wang Y., Li X., et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020;395(10223):497-506. doi: 10.1016/S0140-6736(20)30183-5

37. Bernal-Monterde V., Casas-Deza D., Letona-Giménez L., et al. SARS-CoV-2 Infection Induces a Dual Response in Liver Function Tests: Association with Mortality during Hospitalization. Biomedicines. 2020;8(9):328. doi:10.3390/biomedicines8090328

38. Sun J., Aghemo A., Forner A., Valenti L. COVID-19 and liver disease. Liver Int. 2020;40(6):1278-1281. doi: 10.1111/liv.14470. PMID: 32251539.

39. Varga Z., Flammer A. J., Steiger P., et al. Endothelial cell infection and endotheliitis in COVID-19. Lancet. 2020;395(10234):1417-1418. doi: 10.1016/S0140-6736(20)30937-5

40. Boettler T., Newsome P. N., Mondelli M. U., et al. Care of patients with liver disease during the COVID-19 pandemic: EASL- ESCMID position paper. JHEP Rep. 2020;2(3):100113. doi:10.1016/j.jhepr.2020.100113

41. Ong J., Young B. E., Ong S. COVID-19 in gastroenterology: a clinical perspective. Gut. 2020;69(6):1144-45. doi: 10.1136/gutjnl-2020-321051

42. Xu Z., Shi L., Wang Y., et al. Patholigical findings of COVID-19 associated with acute respiratory distress syndrome. Lancet Respir Med. 2020; 8(4):420-2. doi: 10.1016/S2213-2600(20)30076-X

43. Zhou F., Yu T., Du R., et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet.2020;395(10229):1054-62. doi:10.1016/S0140-6736(20)30566-3

44. Yip T.C., Lui G. C., Wong V. W., et al. Liver injury is independently associated with adverse clinical outcomes in patients with COVID-19. Gut. 2021;70(4):733-742. doi: 10.1136/gutjnl-2020-321726

45. Ferraioli G., Filice C., Castera L. WFUMB guidelines and recommendations for clinical use of ultrasound elastography: Part 3: liver. Ultrasound Med Biol. 2015;41(5):1161-79. doi: 10.1016/j.ultrasmedbio.2015.03.007

46. Kaur G., Sandeep F., Olayinka O., Gupta G. Morphologic Changes in Circulating Blood Cells of COVID-19 Patients. Cureus. 2021;13(2): e13416. doi:10.7759/cureus.13416

47. Nazarullah A., Liang C., Villarreal A., et al. Peripheral Blood Examination Findings in SARS-CoV-2 Infection. Am J Clin Pathol. 2020;154(3):319-329. doi: 10.1093/ajcp/aqaa108

48. Pozdnyakova O., Connell N. T., Battinelli E. M., et al. Clinical Significance of CBC and WBC Morphology in the Diagnosis and Clinical Course of COVID-19 Infection. Am J Clin Pathol. 2021;155(3):364-375. doi: 10.1093/ajcp/aqaa231

49. Levitt M. D. Production and excretion of hydrogen gas in man. N Engl J Med. 1969;281(3):122-7. doi: 10.1056/NEJM196907172810303

50. Pimentel M., Saad R. J., Long M. D., Rao S. S.C. ACG Clinical Guideline: Small Intestinal Bacterial Overgrowth. Am J Gastroenterol. 2020;115(2):165-78. doi: 10.14309/ajg.0000000000000501

51. Quigley E.M.M., Murray J. A., Pimentel M. AGA Clinical Practice Update on Small Intestinal Bacterial Overgrowth: Expert Review. Gastroenterology. 2020;159(4):1526-1532. doi: 10.1053/j.gastro.2020.06.090

52. Chatterjee S., Park S., Low K., et al. The degree of breath methane production in IBS correlates with the severity of constipation. Am J Gastroenterol. 2007 Apr;102(4):837-41. doi: 10.1111/j.1572-0241.2007.01072.x

53. Bratten J.R., Jones M. P. Small intestinal motility. Curr Opin Gastroenterol. 2007;23(2):127-33. doi: 10.1097/MOG.0b013e32801424f3

54. Kim S., Covington A., Pamer E. G. The intestinal microbiota: Antibiotics, colonization resistance, and enteric pathogens. Immunol Rev. 2017;279(1):90-105. doi:10.1111/imr.12563

55. Zuo T., Ng S. C. The Gut Microbiota in the Pathogenesis and Therapeutics of Inflammatory Bowel Disease. Front Microbiol. 2018;9:2247. doi: 10.3389/fmicb.2018.02247

56. Yeoh Y.K., Zuo T., Lui G. C., et al. Gut microbiota composition reflects disease severity and dysfunctional immune responses in patients with COVID-19. Gut. 2021;70(4):698-706. doi: 10.1136/gutjnl-2020-323020

57. Zuo T., Zhang F., Lui G. C.Y., et al. Alterations in Gut Microbiota of Patients With COVID-19 During Time of Hospitalization. Gastroenterology. 2020;159(3):944-955.e8. doi: 10.1053/j.gastro.2020.05.048

58. Drapkina O. M., Gambaryan M. G., Gorny B. E., et al. Health promotion and prevention of chronic non-communicable diseases in the context of the COVID-19 pandemic. Consensus of experts of the National society of evidence-based pharmacotherapy and the Russian society of the prevention of non-communicable diseases. Cardiovascular Therapy and Prevention. 2020;19(3):2605. (In Russ.) doi:10.15829/1728-8800-2020-2605 @@Драпкина О. М., Гамбарян М. Г., Горный Б. Э. и соавт. Укрепление здоровья и профилактика хронических неинфекционных заболеваний в условиях пандемии и самоизоляции. Консенсус экспертов Национального медицинского исследовательского центра терапии и профилактической медицины и Российского общества профилактики неинфекционных заболеваний. Кардиоваскулярная терапия и профилактика. 2020;19(3):2605. doi:10.15829/1728-8800-2020-2605

59. Osipenko M. F., Bikbulatova E. A., Kholin S. I. Prevention and therapy of antibiotic-associated diarrhea: place of probiotics. Meditsinskiy sovet = Medical Council. 2017;(11):104-106. (In Russ.) doi:10.21518/2079-701X-2017-11-104-106 @@Осипенко М. Ф., Бикбулатова Е. А., Холин С. И. Профилактика и лечение антибиотико-ассоциированной диареи: место пробиотиков. Медицинский Совет. 2017;(11):104-106. doi:10.21518/2079-701X-2017-11-104-106

60. Chernikov V. V., Surkov A. N. Antibiotic-associated diarrhea in children: principles of prophylaxis and treatment. Current Pediatrics. 2012;11(2):48-55. (In Russ.) doi:10.15690/vsp.v11i2.210 @@Черников В. В., Сурков А. Н. Антибиотик-ассоциированная диарея у детей: принципы профилактики и лечения. Вопросы современной педиатрии. 2012;11(2):48-55. doi:10.15690/vsp.v11i2.210

61. Gu S., Chen Y., Wu Z., et al. Alterations of the Gut Microbiota in Patients With Coronavirus Disease 2019 or H1N1 Influenza. Clin Infect Dis. 2020;71(10):2669-2678. doi: 10.1093/cid/ciaa709


Рецензия

Для цитирования:


Кручинина М.В., Светлова И.О., Логвиненко И.И., Громов А.А., Каштанова Е.В., Пономарева Н.Е., Кручинина Э.В. Особенности дыхательных тестов (водород + метан), данных непрямой эластометрии печени у реконвалесцентов COVID-19. Экспериментальная и клиническая гастроэнтерология. 2022;(7):131-144. https://doi.org/10.31146/1682-8658-ecg-203-7-131-144

For citation:


Kruchinina M.V., Svetlova I.O., Logvinenko I.I., Gromov A.A., Kashtanova E.V., Ponomareva N.E., Kruchinina E.V. Features of respiratory tests (hydrogen + methane), indirect liver elastometry data in COVID-19 convalescents (pilot study). Experimental and Clinical Gastroenterology. 2022;(7):131-144. (In Russ.) https://doi.org/10.31146/1682-8658-ecg-203-7-131-144

Просмотров: 374


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 1682-8658 (Print)