Features of microbiota in underweight premature infants
https://doi.org/10.31146/1682-8658-ecg-200-4-78-86
Abstract
The aim. Microbiological monitoring of the digestive tract opportunistic microfl ora in underweight premature newborns to substantiate risk groups and the possibility of a personalized approach to manage such patients.
Materials and methods. A case-control observational study included 67 preterm infants (35 boys and 32 girls), divided into three groups according to the underweight degree: low (n = 21), very low (n = 21) and extremely low (n = 25) mass. A comprehensive examination was carried out with clinical- anamnestic, laboratory and clinical- functional diagnostic methods, consultation of a neurologist, ophthalmologist, cardiologist. Microbiological monitoring of opportunistic microfl ora (UPM) of the oral cavity and other biotopes (auricle surface, armpit, fetal part of the placenta) was carried out on the 1st, 3rd and 7th days of life. Biochemical identifi cation was carried out using test systems “Erba Lachema”. Database creation and statistical processing were carried out using software packages of Microsoft® Offi ce® 2010, IBM® SPSS® Statistics 23.0, WinPEPI© 11.39.
Results. The frequency of opportunistic microfl ora isolated from the oral cavity of underweight newborns was signifi cantly higher on the 1st, 3rd days (Fisher’s exact test, p = 0.037) and was characterized by a wider spectrum compared to other studiedbiotopes. The dominant representative of opportunistic microfl ora in most biotopes was S. epidermidis, as well as K. pneumoniae, C. krusei, Burkholderia cepacia complex, and S. maltophilia. There was revealed a correlation link between the qualitative and quantitative parameters of opportunistic microfl ora, as well as the number of opportunistic microfl ora contaminated biotopes with the level of body weight and resistance indicators of underweight premature newborns.
Conclusion. Microbiological monitoring of opportunistic microfl ora of the oral cavity and the inner surface of the auricle biotope makes it possible to consider these microecological parameters as a prognostic criterion for the course and outcomes in premature infants with underweight, as well as to scientifi cally substantiate a personalized approach to the management of such patients, the formation of risk groups, the appointment of corrective and preventive measures to form adequate profileof microbial colonization, prevent of infectious pathology and the decrease risk of an unfavorable outcome.
About the Authors
A. M. SamoukinaRussian Federation
Anna M. Samoukina, PhD, Associate Professor, Head of the Scientific Department; Head of the Department of Hygiene and Ecology
Scopus Author ID: 16064304800, Researcher ID: ABH-1272–2021
4, Sovetskaya St., Tver, 170100
Yu. A. Alekseeva
Russian Federation
Yulia A. Alekseeva, MD, PhD, Professor, Head of the Department of Outpatient Pediatrics and Neonatology
Scopus Author ID: 56915897200
4, Sovetskaya St., Tver, 170100
S. S. Strakhova
Russian Federation
Svetlana S. Strakhova, neonatologist-resuscitator
115, building 3, Petersburg highway, Tver, 170036
M. A. Strakhov
Russian Federation
Maksim A. Strakhov, Ph.D., Associate Professor of the Department of Cardiovascular Surgery
4, Sovetskaya St., Tver, 170100
References
1. Sassone- Corsi M., Raff atellu M. No vacancy: how benefi cial microbes cooperate with immunity to provide colonization resistance to pathogens. J Immunol. 2015 May 1; 194(9): 4081–7. doi: 10.4049/jimmunol.1403169
2. Heederik D., von Mutius E. Does diversity of environmental microbial exposure matter for the occurrence of allergy and asthma? J Allergy Clin Immunol. 2012 Jul; 130(1):44–50. doi: 10.1016/j.jaci.2012.01.067
3. Yang Y., Tian J., Yang B.. Targeting gut microbiome: A novel and potential therapy for autism. Life Sci. 2018 Feb 1;194:111–119. doi: 10.1016/j.lfs.2017.12.027
4. Strati F., Cavalieri D., Albanese D., et al. New evidences on the altered gut microbiota in autism spectrum disorders. Microbiome. 2017 Feb 22;5(1):24. doi: 10.1186/s40168–017–0242–1
5. Vuong H. E., Hsiao E. Y. Emerging Roles for the Gut Microbiome in Autism Spectrum Disorder. Biol Psychiatry. 2017 Mar 1;81(5):411–423. doi: 10.1016/j.biopsych.2016.08.024
6. Robles- Sikisaka R., Ly M., Boehm T., et al. Association between living environment and human oral viral ecology. ISME J. 2013 Sep; 7(9):1710–24. doi: 10.1038/ismej.2013.63
7. Ly M, Abeles S. R., Boehm T. K., Robles-Sikisaka R., et al. Altered oral viral ecology in association with periodontal disease. mBio. 2014 May; 20;5(3): e01133–14. doi: 10.1128/mBio.01133–14
8. Turnbaugh P. J., Ley R. E., Hamady M., et al. Th e human microbiome project. Nature. 2007 Oct 18; 449(7164):804–10. doi: 10.1038/nature06244
9. Costello E. K., Lauber C. L., Hamady M., et al. Bacterial community variation in human body habitats across space and time. Science. 2009 Dec 18; 326(5960):1694–7. doi: 10.1126/science.1177486
10. Angelakis E., Bachar D., Yasir M., et al. Comparison of the gut microbiota of obese individuals from diff erent geographic origins. New Microbes New Infect. 2018 Nov 22; 27:40–47. doi: 10.1016/j.nmni.2018.11.005
11. Pechkurov D. V., Turti T. V., Belyaeva I. A., et al. Intestinal Microflora in Children: from Formation Disturbances Prophylaxis to Preventing Non- Infectious Diseases. Pediatric pharmacology. 2016;13(4):377–381. (In Russ.) doi: 10.15690/pf.v13i4.1611
12. Mackie R. I., Sghir A., Gaskins H. R. Developmental micro bial ecology of the neonatal gastrointestinal tract. Am J Clin Nutr. 1999 May;69(5):1035S-1045S. doi: 10.1093/ajcn/69.5.1035s
13. Belda- Ferre P., Alcaraz L. D., Cabrera- Rubio R., et al. The oral metagenome in health and disease. ISME J. 2012 Jan; 6(1):46–56. doi: 10.1038/ismej.2011.85
14. Ardissone A. N., de la Cruz D. M., Davis- Richardson A.G., et al. Meconium microbiome analysis identifi es bacteria correlated with premature birth. PLoS One. 2014 Mar 10;9(3): e90784. doi: 10.1371/journal.pone.0090784
15. Jakobsson H. E., Abrahamsson T. R., Jenmalm M. C., et al. Decreased gut microbiota diversity, delayed Bacteroidetes colonisation and reduced Th 1 responses in infants delivered by caesarean section. Gut. 2014 Apr;63(4):559–66. doi: 10.1136/gutjnl-2012–303249
16. Pelzer E., Gomez- Arango L.F., Barrett H. L., et al. Review: Maternal health and the placental microbiome. Placenta. 2017 Jun; 54:30–37. doi: 10.1016/j.placenta.2016.12.003
17. Aagaard K., Ma J., Antony K. M., et al. Th e placenta harbors a unique microbiome. Sci Transl Med. 2014 May 21;6(237):237ra65. doi: 10.1126/scitranslmed.3008599
18. Collado M. C., Rautava S., Aakko J., et al. Human gut colonisation may be initiated in utero by distinct microbial communities in the placenta and amniotic fl uid. Sci Rep. 2016 Mar 22;6:23129. doi: 10.1038/srep23129
19. Angelakis E., Merhej V., Raoult D. Related actions of probiotics and antibiotics on gut microbiota and weight modifi cation. Lancet Infect Dis. 2013 Oct;13(10):889–99. doi: 10.1016/S1473–3099(13)70179–8
20. Zheng J., Xiao X., Zhang Q., et al. The Placental Microbiome Varies in Association with Low Birth Weight in Full- Term Neonates. Nutrients. 2015 Aug 17;7(8):6924–37. doi: 10.3390/nu7085315
21. Salminen S., Gibson G. R., McCartney A.L., et al. Infl uence of mode of delivery on gut microbiota composition in seven year old children. Gut. 2004 Sep;53(9):1388–9. doi: 10.1136/gut.2004.041640
22. Dominguez- Bello M.G., Costello E. K., Contreras M., et al. Delivery mode shapes the acquisition and structure of the initial microbiota across multiple body habitats in newborns. Proc Natl Acad Sci U S A. 2010 Jun 29;107(26):11971–5. doi: 10.1073/pnas.1002601107
23. Kristensen K., Henriksen L. Cesarean section and disease associated with immune function. J Allergy Clin Immunol. 2016 Feb;137(2):587–90. doi: 10.1016/j.jaci.2015.07.040
24. Blaser M. Antibiotic overuse: Stop the killing of beneficial bacteria. Nature. 2011 Aug 24;476(7361):393–4. doi: 10.1038/476393a
25. Biasucci G., Benenati B., Morelli L., et al. Cesarean delivery may aff ect the early biodiversity of intestinal bacteria. J Nutr. 2008 Sep;138(9):1796S-1800S. doi: 10.1093/jn/138.9.1796S
26. Davydov B. N., Samoukina A. M., Mikhailova E. S., et al.Variations of oral fl uid microbiota in healthy children and adolescents. Stomatologiia. 2017; 96(1):56–59. (In Russ.) doi: 10.17116/stomat201796156–59
27. Samoukina A. M., Mikhaĭlova E. S., Chervinets V. M., et al. Microbiological monitoring of oral fl uid of clinically healthy children. Stomatologiia. 2015; 94(1):11–13. (In Russ.) doi: 10.17116/stomat201594111–13
28. Kurakin G. F., Samoukina A. M., Potapova N. A. Bacterial and Protozoan Lipoxygenases Could be Involved in Cellto-Cell Signaling and Immune Response Suppression. Biochemistry. 2020; 85(9):1048–1071. (In Russ.) doi: 10.1134/S0006297920090059
29. Chervinets V. M., Chervinets Iu.V., Samoukina A. M., et al, Biofi lm formation by antagonistic strains of oral Lactobacillus. Stomatologiia. 2012; 91(1):16–19. (In Russ.) PMID: 22678601.
30. Chervinets V. M., Chervinets Y. V., Petrova O. A., et al. Gastrointestinal microbiota of the newborns of the fi rst month of life of the Tver region. Klin Lab Diagn. 2018;63(9):579–583. (In Russ.) doi: 10.18821/0869–2084–2018–63–9–579–583
31. Makarova S. G., Broeva M. I. Different Factors Inf luencing Early Stages of Intestine Microbiota Formation. Pediatric pharmacology. 2016;13(3):270–282. (In Russ.) doi: 10.15690/pf.v13i3.1577
32. Yakushin A. S., Ukraintsev S. E., Denisov M. Yu. Intestinal Microbiota: Early Formation, Health Eff ects, and Correction Ways. Current Pediatrics. 2017;16(6):487–492. (In Russ.) doi:10.15690/vsp.v16i6.1821
33. Buccigrossi V., Nicastro E., Guarino A. Functions of intestinal microfl ora in children. Curr. Opin. Gastroenterol. 2013 Jan; 29(1):31–8. doi: 10.1097/MOG.0b013e32835a3500
Review
For citations:
Samoukina A.M., Alekseeva Yu.A., Strakhova S.S., Strakhov M.A. Features of microbiota in underweight premature infants. Experimental and Clinical Gastroenterology. 2022;(4):78-86. (In Russ.) https://doi.org/10.31146/1682-8658-ecg-200-4-78-86