Gluten-free diet for neurological and psychiatric diseases: is it worth expecting an effect?
https://doi.org/10.31146/1682-8658-ecg-188-4-170-177
Abstract
Gluten represents an alcohol- soluble fraction of endosperm proteins of some cereals (wheat, rye, barley). The molecular characteristics of gluten, in particular, the high content of proline in the composition, determines its high resistance to human gastric, pancreatic and intestinal enzymes. Accordingly, gluten peptides retain their immunogenicity when they enter the internal environment of the body, which determines their ability to activate both the innate and adaptive immune response, and maintain pathological immune- mediated reactions that underlie the complex of gluten- associated diseases and pathological conditions. The question of how gluten consumption may be associated with various neurological disorders continues to be discussed. Despite the lack of sufficient objective evidence, the peculiarities of gliadin metabolism suggest the possibility of an association between the consumption of gluten- containing products with the development of neuropsychiatric disorders.. Of particular interest is the efficacy of gluten-free diet in the complex therapy of such diseases as autism, schizophrenia, as well as some neurological disorders, including chronic fatigue syndrome, various cognitive impairments, depression, etc. The article presents a number of research results, as well as discusses the potential mechanisms of the neurotropic action of gluten. The article discusses the potential metabolic and immunological mechanisms of the neurotropic action of gluten, analyzes the literature data regarding the effectiveness of a gluten-free diet in various neurological diseases and psychiatric disorders.
About the Authors
Y. A. DmitrievaRussian Federation
Yulia A. Dmitrieva, Cand. of Med. Sci., Associate Professor of the Pediatric Department n. a. G. N. Speransky, pediatrician, gastroenterologist
125993 Barrikadnaya str. 2/1, Moscow
I. N. Zakharova
Russian Federation
Irina N. Zakharova, Doct. Of Med.Sci., Professor, the head of the Pediatric Department n. a. G. N. Speransky, Honored Doctor of Russian Federation
125993 Barrikadnaya str. 2/1, Moscow
E. R. Radchenko
Russian Federation
Elena R. Radchenko, gastroenterologist, pediatric department
125373 Geroev Panfilovtsev str. 28, Moscow
E. A. Doroshina
Russian Federation
Elena A. Doroshina, Cand. of Med. Sci, the head of pediatric department
143409 Svetlaya str., Krasnogorsk
References
1. Brown CW. Sprue and Its Treatment. London: J Bale, Sons, and Danielson; 1908
2. Elders C. Tropical sprue and pernicious anaemia, aetiology and treatment. Lancet. 1925; i:75–77. Doi:10.1016/S0140–6736(01)21163–5
3. Cooke WT, Thomas- Smith W. Neurological disorders associated with adult coeliac disease. Brain. 1966; 89: 683–722. doi:10.1093/brain/89.4.683
4. Hadjivassiliou M, Gibson A, Davies- Jones GAB, Lobo A, Stephenson TJ, Milford- Ward A. Is cryptic gluten sensitivity an important cause of neurological illness? Lancet. 1996; 347: 369–71 doi:10.1016/s0140–6736(96)90540–1
5. Luostarinen L, Pirttila¨ T, Collin P. Coeliac disease presenting with neurological disorders. Eur Neurol. 1999;42:132–135. doi:10.1159/000008086
6. Briani C, Zara G, Alaedini A, et al. Neurological complications of coeliac disease and autoimmune mechanisms: a prospective study. J Neuroimmunol. 2008; 195: 171–75. doi:10.1016/j.jneuroim.2008.01.008
7. Zakharova I. N., Borovik T. E., Roslavtseva E. A., et al. Tseliakiya: klinicheskiye osobennosti [Сoeliac disease: clinical features]. Consilium medicum. Pediartiya, 2014. no. 3, pp. 62–67. (In Russ.) https://www.elibrary.ru/item.asp?id=22514377
8. Dmitrieva Y.A ., Zakharova I. N. Neurologic Manifestations in coeliac disease patients. Meditsinskiy sovet = Medical Council. 2017;(9):93–96. (In Russ.) doi: 10.21518/2079–701X-2017–9–93–96
9. Luostarinen L, Himanen SL, Luostarinen M, et al. Neuromuscular and sensory disturbances in patients with well-treated celiac disease. J Neurol Neurosurg Psychiatry. 2003;74:490–494 doi:10.1136/jnnp.74.4.490
10. Chin RL, Sander HW, Brannagan TH, et al. Celiac neuropathy. Neurology. 2003;60:1581–1585 doi:10.1212/01.wnl.0000063307.84039.c7
11. Kaplan JG, Pack D, Horoupian D, et al. Distal axonopathy associated with chronic gluten enteropathy: a treatable disorder. Neurology. 1988;38:642–645 doi:10.1212/wnl.38.4.642
12. Muller AF, Donnelly MT, Smith CM, Grundman MJ, Holmes GK, Toghill PJ. Neurological complications of celiac disease: a rare but continuing problem. Am J Gastroenterol. 1996 Jul;91(7):1430–5. PMID: 8678009.
13. Volta U, Caio G, De Giorgio R, et al. Non-celiac gluten sensitivity: a work-in-progress entity in the spectrum of wheat- related disorders. Best Pract Res Clin Gastroenterol. 2015 Jun;29(3):477–91. doi:10.1016/j.bpg.2015.04.006
14. Volta U, Bardella MT, Calabr o A, et al. Study Group for Non- Celiac Gluten Sensitivity. An Italian prospective multicenter survey on patients suspected of having non-celiac gluten sensitivity. BMC Med. 2014;12:85. doi:10.1186/1741–7015–12–85
15. Francavilla R, Cristofori F, Castellaneta S, et al. Clinical, serologic, and histologic features of gluten sensitivity in children. J Pediatr. 2014;164:463e7. doi:10.1016/j.jpeds.2013.10.007
16. McElhanon BO, McCracken C, Karpen S, Sharp WG (2014) Gastrointestinal symptoms in autism spectrum disorder: a metaanalysis. Pediatrics. 133:872–883. doi:10.1542/peds.2013–3995
17. Piwowarczyk A, Horvath A, Łukasik J, et al. Glutenand casein-free diet and autism spectrum disorders in children: a systematic review. Eur J Nutr. 2018 Mar;57(2):433–440. doi:10.1007/s00394–017–1483–2
18. Lyra L, Rizzo LE, Sunahara CS, et al. What do Cochrane systematic reviews say about interventions for autism spectrum disorders? Sao Paulo Med J. 2017 Mar- Apr;135(2):192–201. doi:10.1590/1516–3180.2017.0058200317
19. Sathe N, Andrews JC, McPheeters ML, et al. Nutritional and Dietary Interventions for Autism Spectrum Disorder: A Systematic Review. Pediatrics. 2017 Jun;139(6). pii: e20170346. doi:10.1542/peds.2017–0346
20. Bender L. Childhood schizophrenia. Psychiatr. Q. 1953; 27: 663–681 doi:10.1007/BF01562517
21. Dohan FC. Cereals and schizophrenia. Data and hypothesis. Acta Psychiatr. Scand. 1966; 42:125–152. doi:10.1111/j.1600–0447.1966.tb01920.x
22. Dohan FC, Grasberger J, Lowell F, et al. Relapsed schizophrenics: more rapid improvement on a milk-and cereal-free diet. Br J Psychiatry. 1969, 115(522):595–596. doi:10.1192/bjp.115.522.595
23. Singh MM, Kay SR. Wheat gluten asa pathogenic factor in schizophrenia. Science. 1976:191(4225): 401–402. doi:10.1126/science.1246624
24. Dohan FC, Harper EH, Clark MH, Rodrigue RB, Zigas V. Is schizophrenia rare if grain is rare? Biol Psychiatry. 1984 Mar;19(3):385–99. PMID: 6609726.
25. Vlissides DN, Venulet A, Jenner F: A double- blind gluten-free/gluten-load controlled trial in a secure ward population. Br J Psychiatry. 1986,148(4):447–452. doi:10.1192/bjp.148.4.447
26. Potkin SG, Weinberger D, Kleinman J et al. Wheat gluten challenge in schizophrenic patients. Am J Psychiatry. 1981,138(1208):11. doi:10.1176/ajp.138.9.1208
27. Arroll MA, Wilder L, Neil J. Nutritional interventions for the adjunctive treatment of schizophrenia: a brief review. Nutrition Journal. 2014, 13:91. doi:10.1186/1475–2891–13–91
28. Cooke WT, Th omas- Smith W. Neurological disorders associated with adult coeliac disease. Brain. 1966; 89: 683–722. doi:10.1093/brain/89.4.683
29. Murray- Kolb LE, Beard JL. Iron treatment normalizes cognitive functioning in young women. Am J Clin Nutr. 2007; 85: 778–87. doi:10.1093/ajcn/85.3.778
30. Balion C, Griffith L, Strifler L, et al. Vitamin D, cognition, and dementia: a systematic review and meta-analysis. Neurology. 2012; 79: 1397–405. doi:10.1212/WNL.0b013e31826c197f
31. Ramos M, Allen L, Mungas D, et al. Lowfolate status is associated with impaired cognitive function and dementia in the Sacramento Area Latino Study on Aging. Am J Clin Nutr. 2005; 82: 1346–52. doi:10.1093/ajcn/82.6.1346
32. Kieslich M, Errázuriz G, Posselt HG et al. Brain whitematter lesions in celiac disease: a prospective study of 75 diet-treated patients. Pediatrics. 2001;108(2): E21. doi:10.1542/peds.108.2.e21
33. Lichtwark IT, Newnham ED, Robinson SR, et al. Cognitive impairment in coeliac disease improves on a gluten-free diet and correlates with histological and serological indices of disease severity. Aliment Pharmacol Th er. 2014; 40: 160–70. doi:10.1111/apt.12809
34. Parfenov A. I., Bykova S. V., Sabelnikova E. A., et al. AllRussian Consensus on Diagnosis and Treatment of Celiac Disease in Children and Adults. Ter Arkh. 2017;89(3):94– 107. (In Russ.) doi: 10.17116/terarkh201789394–107
35. Husby S, Koletzko S, Korponay- SzabÓ I.R, et al. European Society for Pediatric Gastroenterology, Hepatology, and Nutrition Guidelines for the Diagnosis of Coeliac Disease. J Pediatr Gastroenterol Nutr. 2012;54: 136–16. doi:10.1097/MPG.0b013e31821a23d0
36. Udit S, Gautron L. Molecular anatomy of the gut-brain axis revealed with transgenic technologies: implications in metabolic research. Front Neurosci. 2013 Jul 31;7:134. doi:10.3389/fnins.2013.00134
37. Karakuła- Juchnowicz H, Dzikowski M, Pelczarska A, et al. The brain-gut axis dysfunctions and hypersensitivity to food antigens in the etiopathogenesis of schizophrenia. Psychiatr Pol. 2016;50(4):747–760. doi:10.12740/PP/OnlineFirst/45053
38. Severance EG, Alaedini A, Yang S, et al. Gastrointestinal inflammation and associated immune activation in schizophrenia. Schizophr. Res. 2012; 138:48–53.
39. de Magistris L, Familiari V, Pascotto A, et al (2010) Alterations of the intestinal barrier in patients with autism spectrum disorders and in their first- degree relatives. J Pediatr Gastroenterol Nutr. 51:418–424. doi:10.1097/MPG.0b013e3181dcc4a5
40. D’Eufemia P, Celli M, Finocchiaro R, et al (1996) Abnormal intestinal permeability in children with autism. Acta Paediatr. 85:1076–1079. doi:10.1111/j.1651–2227.1996.tb14220.x
41. Lu R, Wang W, Uzzau S, et al. Affinity purification and partial characterization of the zonulin/zonula occludens toxin (zot) receptor from human brain. J. Neurochem. 2000; 74: 320–326. doi:10.1046/j.1471–4159.2000.0740320.x
42. Ly V, Bottelier M, Hoekstra PJ, et al. Elimination diets’ efficacy and mechanisms in attention deficit hyperactivity disorder and autism spectrum disorder. Eur Child Adolesc Psychiatry. 2017 Sep;26(9):1067–1079. doi: doi:10.1007/s00787–017–0959–1
43. Choi S, DiSilvio B, Fernstrom MH, Fernstrom JD. Meal ingestion, aminoacids and brain neurotransmitters: effects of dietary protein source on serotonin and catecholamine synthesis rats. Physiol Behav. 2009; 98: 156–62. doi:10.1016/j.physbeh.2009.05.004
44. Schuppan D, Pickert G, Ashfaq- Khan M, Zevallos V. Nonceliac wheat sensitivity: differential diagnosis, triggers and implications. Best Pract Res Clin Gastroenterol. 2015 Jun;29(3):469–76. doi:10.1016/j.bpg.2015.04.002
45. Banks WA, Farr SA, Morley JE. Entry of blood- borne cytokines into the central nervous system: effects on cognitive processes. Neuroimmunomodulation. 2002– 2003;10(6):319–27. doi:10.1159/000071472
46. Karakuła- Juchnowicz H, Dzikowski M, Pelczarska A, et al. The brain-gut axis dysfunctions and hypersensitivity to food antigens in the etiopathogenesis of schizophrenia. Psychiatr Pol. 2016;50(4):747–760. doi:10.12740/PP/OnlineFirst/45053
47. Wang L, Christophersen CT, Sorich MJ, et al. Elevated fecal short chain fatty acid and ammonia concentrations in children with autism spectrum disorder. Dig. Dis. Sci. 2012; 57: 2096–2102. doi:10.1007/s10620–012–2167–7
48. Thomas RH, Meeking MM, Mepham JR, et al. Th e enteric bacterial metabolite propionic acid alters brain and plasma phospholipid molecular species: further development ofa rodent model of autism spectrum disorders. J. Neuroinfl ammation. 2012; 9: 153. doi:10.1186/1742–2094–9–153
49. Sandler RH, Finegold SM, Bolte ER, et al. Sortterm benefit from oral vancomycin treatment of regressiveonset autism. J. Child Neurol. 2000;15(7): 429–435. doi:10.1177/088307380001500701
50. Iyer LM, Aravind L, Coon SL, et al. Evolution of cell-cell signaling in animals: Did late horizontal gene transfer from bacteria havea role? Trends Genet. 2004; 20(7): 292–299. doi:10.1016/j.tig.2004.05.007
51. Desbonnet L, Garrett L, Clarke G, et al. The probiotic Bifidobacteria infantis: an assessment of potential antidepressant properties in the rat. J. Psychiatr. Res. 2008;43: 164–174. doi:10.1016/j.jpsychires.2008.03.009
52. Irwin MR, Miller AH. Depressive disorders and immunity: 20 years of progress and discovery. Brain Behav. Immun. 2007; 21: 374–383. doi:10.1016/j.bbi.2007.01.010
53. Bercik P, Denou E, Collins J. The intestinal microbiota affect central levels of brain- derived neurotropic factor and behavior in mice. Gastroenterology. 2011; 141: 599–609. doi:10.1053/j.gastro.2011.04.052
54. Heijtz RD, Wang S, Anuar F. Normal gut microbiota modulates brain development and behavior. Proc Natl Acad Sci. 2011; 108: 3047–52. doi:10.1073/pnas.1010529108
55. Tillisch K, Labus J, Kilpatrick L. Consumption of fermented milk product with probiotic modulates brain activity. Gastroenterology. 2013; 144: 1394–401. doi:10.1053/j.gastro.2013.02.043
56. Belmer S. V., Razumovsky A. Yu, Khavkin A. I., et al. Bolezni kishechnika u detey [Intestine disease in children]. Vol.1. Moscow. MEDPRAKTIKA-M. 2018.p 436. (In Russ.)
57. Belmer S.V., Razumovsky A. Yu, Khavkin A. I., et al. Bolezni kishechnika u detey [Intestine disease in children]. Vol.1. Moscow. MEDPRAKTIKA-M. 2018.p 496. (In Russ.)
58. Belmer S., Khavkin A. Neperenosimost’ glyutena i pokazaniya k bezglyutenovoy diyete [Gluten intolerance and indication for gluten free diet]. Vrach, 2011-no.5, pp 17–21. (In Russ.)
59. Shapovalova N.S., Novikova V. P., Revnova M. O., Kalinina Е. Yu., Belmer S. V., Khavkin A. I. Seronegative coeliac disease in the light of the guidelines by the European Society for the Study of Coeliac Disease (ESsCD) 2019. Vopr. det. dietol. (Pediatric Nutrition). 2019; 17(6): 14–22. (In Russian). DOI: 10.20953/1727–5784–2019–6–14–22
60. Komarova O.N., Khavkin A. I. Peculiarities of the actual nutrition and nutritional status in children with celiac disease. Pediatria. 2018; 97 (6): 99–103. (In Russ.) DOI: 10.24110/0031–403X-2018–97–6–99–103
61. Shapovalova N. S., Novikova V. P., Revnova M. O., Lapin S. V., Kholopova I. V., Khavkin A. I. The role of HLA-DQ2.2 genotype for patients with celiacia. Experimental and Clinical Gastroenterology. 2018;159(11): 19–23. (In Russ.) DOI: 10.31146/1682–8658-ecg-159–11–19–23
Review
For citations:
Dmitrieva Y.A., Zakharova I.N., Radchenko E.R., Doroshina E.A. Gluten-free diet for neurological and psychiatric diseases: is it worth expecting an effect? Experimental and Clinical Gastroenterology. 2021;(4):170-177. (In Russ.) https://doi.org/10.31146/1682-8658-ecg-188-4-170-177