Preview

Экспериментальная и клиническая гастроэнтерология

Расширенный поиск

Взаимосвязь муколитической бактерии Akkermansia muciniphila с колоректальным раком

https://doi.org/10.31146/1682-8658-ecg-178-6-158-165

Аннотация

Колоректальный рак—заболевание, занимающее далеко не самое последнее место в статистике заболеваемости в Российской Федерации и в мире. Наряду с широко известными факторами риска развития данной патологии отмечается возможное участие в этом процессе некоторых представителей кишечной микробиоты. Так, в некоторых исследованиях предполагается, что с развитием колоректального рака взаимосвязана бактерия, способная расщеплять муцины,—Akkermansia muciniphila, однако другие работы подвергают это утверждение сомнению. В настоящем обзоре мы описываем ряд исследований, посвящённых определению зависимости наличия колоректального рака от количества A. muciniphila, взаимосвязи этой бактерии с развитием воспаления как предиктора онкогенеза, влиянию других представителей кишечной микробиоты на её функции, а также описываем один из возможных механизмов, связывающих способность этой бактерии расщеплять муцины с развитием онкогенеза.

Об авторах

А. М. Карамзин
ФГАОУ ВО Первый МГМУ им. И. М. Сеченова Минздрава России (Сеченовский Университет)
Россия

к. б. н., доцент кафедры микробиологии, вирусологии и иммунологии Института общественного здоровья имени Ф. Ф. Эрисмана,

Москва



А. В. Ропот
ФГАОУ ВО Первый МГМУ им. И. М. Сеченова Минздрава России (Сеченовский Университет)
Россия

студент 6 курса Международной школы «Медицина будущего»,

Москва



Р. Е. Бошьян
ФГАОУ ВО Первый МГМУ им. И. М. Сеченова Минздрава России (Сеченовский Университет)
Россия

к. м. н., доцент кафедры микробиологии, вирусологии и иммунологии Института общественного здоровья имени Ф. Ф. Эрисмана,

Москва



Список литературы

1. Parkin D. M., Bray F., Ferlay J., Pisani P. Global cancer statistics // CA Cancer J Clin. – 2005. – Vol. 55, № 2. – P. 74–108.

2. Каприн А.Д., Старинский В. В., Петрова Г. В. (ред.) Злокачественные новообразования в России в 2018 году (заболеваемость и смертность).–Москва: МНИОИ им. П. А. Герцена филиал ФГБУ «НМИЦ радиологии» Минздрава России, 2019.

3. Chambers W. M., Warren B. F. Jewell D. P., Mortensen N. J. Cancer surveillance in ulcerative colitis // Br J Surg. – 2005. – Vol. 92, № 8. – P. 928–936.

4. Huxley R. R., Ansary–Moghaddam A., Clift on P. et al. The impact of dietary and lifestyle risk factors on risk of colorectal cancer: a quantitative overview of the epidemiological evidence // Int J Cancer. – 2009. – Vol. 125, № 1. – P. 171–180.

5. Larsson S. C., Rafter J., Holmberg L. et al. Red meat consumption and risk of cancers of the proximal colon, distal colon and rectum: the Swedish Mammography Cohort // Int J Cancer. – 2005. – Vol. 113, № 5. – P. 829–834.

6. Slattery M. L. Diet, lifestyle, and colon cancer // Semin Gastrointest Dis. – 2000. – Vol. 11, № 3. – P. 142–146.

7. Cheesman S. E., Neal J. T., Mittge E. et al. Epithelial cell proliferation in the developing zebrafi sh intestine is regulated by the Wnt pathway and microbial signaling via Myd88 // Proc Natl Acad Sci U S A. – 2011. – № 108, Suppl 1. – P. 4570–4577.

8. Dolara P., Caderni G., Salvadori M. et al. Fecal levels of short–chain fatty acids and bile acids as determinants of colonic mucosal cell proliferation in humans // Nutr Cancer. – 2002. – Vol. 42, № 2. – P. 186–190.

9. Stappenbeck T. S., Hooper L. V., Gordon, J. I. De ve lop mental regulation of intestinal angiogenesis by indigenous microbes via Paneth cells // Proc Natl Acad Sci U S A. – 2002. – Vol. 99, № 24. – P. 15451–15455.

10. Rakoff –Nahoum S., Medzhitov R. Regulation of spontaneous intestinal tumorigenesis through the adaptor protein MyD88 // Science. – 2007. – Vol. 317, № 5834. – P. 124–127.

11. Derrien M., Vaughan E. E., Plugge C. M., de Vos W. M. Akkermansia muciniphila gen. nov., sp. nov., a human intestinal mucin–degrading bacterium // Int J Syst Evol Microbiol. – 2004. – Vol. 54, № 5. – P. 1469–1476.

12. Collado M. C., Derrien M., Isolauri E. et al. Intestinal integrity and Akkermansia muciniphila, a mucin–degrading member of the intestinal microbiota present in infants, adults, and the elderly // Appl Environ Microbiol. – 2007. – Vol. 73, № 23. – P. 7767–7770.

13. Derrien M., Belzer C., de Vos W. M. Akkermansia muciniphila and its role in regulating host functions // Microb Pathog. – 2017. – № 106. – P. 171–181.

14. Ottman N., Geerlings S. Y., Aalvink S. et al. Action and function of Akkermansia muciniphila in microbiome ecology, health and disease // Best Pract Res Clin Gastroenterol. – 2017. – Vol. 31, № 6. – P. 637–642.

15. Weir T. L., Manter D. K., Shefl in A. M. et al. Stool microbiome and metabolome diff erences between colorectal cancer patients and healthy adults // PLoS One. – 2013. – Vol. 8, № 8. – P. e70803.

16. Byrd J. C., Bresalier R. S. Mucins and mucin binding proteins in colorectal cancer // Cancer Metastasis Rev. – 2004. – Vol. 23, № 1–2. – P. 77–99.

17. Lance P. Recent developments in colorectal cancer // J R Coll Physicians Lond. – 1997.–Vol. 31, № 5.–P. 483–487.

18. Sanapareddy N., Legge R. M., Jovov B. et al. Increased rectal microbial richness is associated with the presence of colorectal adenomas in humans // ISME J. – 2012.–Vol. 6, № 10. – P. 1858–1868.

19. Farhana L., Antaki F., Murshed F. et al. Gut microbiome profi ling and colorectal cancer in African Americans and Caucasian Americans // World J Gastrointest Pathophysiol. – 2018. – Vol. 9, № 2. – P. 47–58.

20. Ashktorab H., Kupfer S. S., Brim H., Carethers J. M. Racial Disparity in Gastrointestinal Cancer Risk // Gastroenterology. – 2017. – Vol. 153, № 4. – P. 910–923.

21. Howe C., Kim S. J., Mitchell J. et al. Diff erential expression of tumor–associated genes and altered gut microbiome with decreased Akkermansia muciniphila confer a tumor–preventive microenvironment in intestinal epithelial Pten–deficient mice // Biochim Biophys Acta Mol Basis Dis. – 2018. – Vol. 1864, № 12. – P. 3746–3758.

22. Hsu F., Mao Y. The structure of phosphoinositide phosphatases: Insights into substrate specificity and catalysis // Biochim Biophys Acta. – 2015. – Vol. 1851, № 6. – P. 698–710.

23. Lin P.C., Lin J. K., Lin H. H. et al. A comprehensive analysis of phosphatase and tensin homolog deleted on chromosome 10 (PTEN) loss in colorectal cancer // World J Surg Oncol. – 2015. – № 13. – P. 186.

24. Colakoglu T., Yildirim S., Kayaselcuk F. et al. Clinicopathological significance of PTEN loss and the phosphoinositide 3–kinase/Akt pathway in sporadic colorectal neoplasms: is PTEN loss predictor of local recurrence? // Am J Surg. – 2008. – Vol. 195, № 6. – P. 719–725.

25. Zhou X.P., Loukola A., Salovaara R. et al. PTEN mutational spectra, expression levels, and subcellular localization in microsatellite stable and unstable colorectal cancers // Am J Pathol. – 2002. – Vol. 161, № 2. – P. 439–447.

26. Bohn B.A., Mina S., Krohn A. et al. Altered PTEN function caused by deletion or gene disruption is associated with poor prognosis in rectal but not in colon cancer // Hum Pathol. – 2013. – Vol. 44, № 8. – P. 1524–1533.

27. Choi Y.J., Jung J., Chung H. K. et al. PTEN regulates TLR5–induced intestinal inflammation by controlling Mal/TIRAP recruitment // FASEB J. – 2013. – Vol. 27, № 1. – P. 243–254.

28. Im E., Jung J., Pothoulakis C., Rhee S. H. Disruption of Pten speeds onset and increases severity of spontaneous colitis in Il10(–/–) mice // Gastroenterology. – 2014.–Vol. 147, № 3. – P. 667–679.e10.

29. Langlois M.J., Roy S. A., Auclair B. A. et al. Epithelial phosphatase and tensin homolog regulates intestinal architecture and secretory cell commitment and acts as a modifier gene in neoplasia // FASEB J. – 2009. –Vol. 23, № 6. – P. 1835–1844.

30. Lee D.H., Anderson K. E., Harnack L. J. et al. Heme iron, zinc, alcohol consumption, and colon cancer: Iowa Women’s Health Study // J Natl Cancer Inst. – 2004. – Vol. 96, № 5. – P. 403–407.

31. Balder H.F., Vogel J., Jansen M. C. et al. Heme and chlorophyll intake and risk of colorectal cancer in the Netherlands cohort study // Cancer Epidemiol Biomarkers Prev. – 2006. – Vol. 15, № 4. – P. 717–725.

32. Sesink A.L., Termont D. S., Kleibeuker J. H., Van der Meer R. Red meat and colon cancer: the cytotoxic and hyperproliferative effects of dietary heme // Cancer Res. – 1999. – Vol. 59, № 22. – P. 5704–5709.

33. IJssennagger N., Rijnierse A., de Wit N. et al. Dietary haem stimulates epithelial cell turnover by downregulating feedback inhibitors of proliferation in murine colon // Gut. – 2012. – Vol. 61, № 7. – P. 1041–1049.

34. Kinzler K.W., Vogelstein B. Lessons from hereditary colorectal cancer // Cell. – 1996. –Vol. 87, № 2. –P. 159–170.

35. IJssennagger N., Derrien M., van Doorn G. M. et al. Dietary heme alters microbiota and mucosa of mouse colon without functional changes in host–microbe cross– talk // PLoS One. – 2012. – Vol. 7, № 12. – P. e49868.

36. Ijssennagger N., Rijnierse A., de Wit N. J. et al. Dietary heme induces acute oxidative stress, but delayed cytotoxicity and compensatory hyperproliferation in mouse colon // Carcinogenesis. – 2013. – Vol. 34, № 7. – P. 1628–1635.

37. Ijssennagger N., Belzer C., Hooiveld G. J. et al. Gut microbiota facilitates dietary heme–induced epithelial hyperproliferation by opening the mucus barrier in colon // Proc Natl Acad Sci U S A. – 2015. – Vol. 112, № 32. – P. 10038–10043.

38. Ullman T.A., Itzkowitz S. H. Intestinal inflammation and cancer // Gastroenterology. – 2011. – Vol. 140, № 6. – P. 1807–1816.

39. Eaden J.A., Abrams K. R., Mayberry J. F. The risk of colorectal cancer in ulcerative colitis: a meta–analysis // Gut. – 2001. – Vol. 48, № 4. – P. 526–535.

40. Canavan C., Abrams K. R., Mayberry J. Meta–analysis: colorectal and small bowel cancer risk in patients with Crohn’s disease // Aliment Pharmacol Th er. – 2006.–Vol. 23, № 8. – P. 1097–1104.

41. Earley H., Lennon G., Balfe Á. et al. The abundance of Akkermansia muciniphila and its relationship with sulphated colonic mucins in health and ulcerative colitis // Sci Rep. – 2019. – Vol. 9, № 1. – P. 15683.

42. Png C.W., Lindén S. K., Gilshenan K. S. et al. Mucolytic bacteria with increased prevalence in IBD mucosa augment in vitro utilization of mucin by other bacteria // Am J Gastroenterol. – 2010. – Vol. 105, № 11. – P. 2420–2428.

43. Zhou X., Chen C., Zhong Y. N. et al. Effect and mechanism of vitamin D on the development of colorectal cancer based on intestinal flora disorder // J Gastroenterol Hepatol. – 2019. – Опубликовано онлайн до печати.

44. Jenab M., Bueno–de–Mesquita H.B., Ferrari P. et al. Association between pre–diagnostic circulating vitamin D concentration and risk of colorectal cancer in European populations: a nested case–control study // BMJ. – 2010. – Vol. 340, № b5500.

45. De Robertis M., Massi E., Poeta M. L. et al. The AOM/ DSS murine model for the study of colon carcinogenesis: From pathways to diagnosis and therapy studies // J Carcinog. – 2011. – Vol. 10, № 9.

46. Baxter N.T., Zackular J. P., Chen G. Y., Schloss P. D. Structure of the gut microbiome following colonization with human feces determines colonic tumor burden // Microbiome. – 2014. – Vol. 2, № 20.

47. Dingemanse C., Belzer C., van Hijum S. A. et al. Akkermansia muciniphila and Helicobacter typhlonius modulate intestinal tumor development in mice // Carcinogenesis. – 2015. – Vol. 36, № 11. – P. 1388–1396.

48. Ganesh B.P., Klopfleisch R., Loh G., Blaut M. Commensal Akkermansia muciniphila exacerbates gut inflammation in Salmonella Typhimurium–infected gnotobiotic mice // PLoS One. – 2013. – Vol. 8, № 9. – P. e74963.

49. Shin NR, Lee JC, Lee HY, et al. An increase in the Akkermansia spp. population induced by metformin treatment improves glucose homeostasis in diet–induced obese mice. Gut. 2014;63(5):727–735. doi:10.1136/gutjnl-2012-303839

50. Lee H., Ko G. Effect of metformin on metabolic improvement and gut microbiota // Appl Environ Microbiol. – 2014. – Vol. 80, № 19. – P. 5935–5943.

51. Kosciow K., Deppenmeier U. Characterization of a phospholipid–regulated β–galactosidase from Akkermansia muciniphila involved in mucin degradation // Microbiologyopen. – 2019. – Vol. 8, № 8. – P. e00796.

52. Ravichandran K. S. Find–me and eat–me signals in apoptotic cell clearance: progress and conundrums // J Exp Med. – 2010. – Vol. 207, № 9. – P. 1807–1817.

53. Piller F., Le Deist F., Weinberg K. I. Altered O-glycan synthesis in lymphocytes from patients with Wiskott– Aldrich syndrome // J Exp Med. – 1991. – Vol. 173, № 6. – P. 1501–1510.

54. Eda S., Yamanaka M., Beppu M. Carbohydrate–mediated phagocytic recognition of early apoptotic cells undergoing transient capping of CD43 glycoprotein // J Biol Chem. – 2004. – Vol. 279, № 7. – P. 5967–5974.

55. Stace C.L., Ktistakis N. T. Phosphatidic acid– and phosphatidylserine–binding proteins // Biochim Biophys Acta. – 2006. – Vol. 1761, № 8. – P. 913–926.

56. Yamaji–Hasegawa A., Tsujimoto M. Asymmetric distribution of phospholipids in biomembranes // Biol Pharm Bull. – 2006. – Vol. 29, № 8. – P. 1547–1553.

57. Fourcade O., Simon M. F., Viodé C. et al. Secretory phospholipase A2 generates the novel lipid mediator lysophosphatidic acid in membrane microvesicles shed from activated cells // Cell. – 1995.–Vol. 80, № 6.–С. 919–927.


Рецензия

Для цитирования:


Карамзин А.М., Ропот А.В., Бошьян Р.Е. Взаимосвязь муколитической бактерии Akkermansia muciniphila с колоректальным раком. Экспериментальная и клиническая гастроэнтерология. 2020;(6):158-165. https://doi.org/10.31146/1682-8658-ecg-178-6-158-165

For citation:


Karamzin A.M., Ropot A.V., Boshian R.E. Relationship of the mucin-degrading bacterium Akkermansia muciniphila with colorectal cancer. Experimental and Clinical Gastroenterology. 2020;(6):158-165. (In Russ.) https://doi.org/10.31146/1682-8658-ecg-178-6-158-165

Просмотров: 1859


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 1682-8658 (Print)