Preview

Experimental and Clinical Gastroenterology

Advanced search

INFLUENCE OF GUT MICROBIOTA ON EPIGENETICS: MECHANISMS, ROLE IN THE DEVELOPMENT OF DISEASES, DIAGNOSTIC AND THERAPEUTIC POTENTIAL

Abstract

The development and introduction of high-performance molecular genetic methods into practice allowed us, in recent years, to increase our knowledge of the epigenome and microbiome, which shed light on the mechanisms of development of various pathologies, such as cancer, immune-mediated, metabolic and cardiovascular diseases. It was found that the dysbiosis of gut microbiota (GM), which often accompanies these diseases, can affect the epigenetic mechanisms of the regulation of the activity of individual genes either directly through a change in the composition of GM, or indirectly, through changes in metabolites, which are various biologically active substances (short-chain fatty acids, biotin, folic acid and other biologically active molecules). Indeed, correlations between epigenetic mechanisms regulating the activity of host genes, on one hand, and changes in the composition of its gut microbiota or metabolites produced by intestinal microorganisms, on the other, have been established in certain diseases. It served as the basis for assuming that GM can become a diagnostic marker for certain diseases, and that treating the intestinal dysbiosis by transplanting healthy microflora is an effective therapeutic strategy. In this article, we discuss the relationship between dysbiosis of the gut microbiota and the host’s epigenome, as well as the possibility of using the microbiome and epigenome as diagnostic and therapeutic targets.

About the Authors

K. A. Aitbaev
Scientific Research Institute of Molecular Biology and Medicine
Russian Federation


I. T. Murkamilov
Kyrgyz State Medical Academy named after I. K. Akhunbayev; Kyrgyz Russian Slavic University named after the First President of Russia B. N. Yeltsin
Russian Federation


V. V. Fomin
FSAEI HE First Moscow State Medical University named after I. M. Sechenov
Russian Federation


Zh. A. Murkamilova
Family Medicine Center № 7
Russian Federation


References

1. Cortessis V. K., Thomas D. C., Levine A. J. et al. Environmental epigenetics: prospects for studying epigenetic modification of exposure-response relationships. Hum Genet. 2012; 131(10):1565-89. DOI:10.1007/s00439-012-1189-8.

2. Bannister A. J., Kouzarides T. Regulation of chromatin by histone modifications. Cell Research 2011; 21(3):381-395. DOI:10.1038/cr.2011.22.

3. Kohli R. M., Zhang Y. TET enzimes, TDG and the dynamics of DNA demethylation. Nature 2013; 502(7472):472-479. DOI:10.1038/nature12750.

4. Пендина А. А., Гринкевич В. В., Кузнецова Т. В., Баранов В. С. Метилирование ДНК - универсальный механизм регуляции активности генов. Экологическая генетика 2004; II (1):27-37.

5. Bartel D. P. MicroRNAs: target recognition and regulatory functions. Cell.2009;23:215-233. DOI:10.1016/j.cell.2009.01.002.

6. Wu H. J., Ivanov I. I., Darce J. et al. Gut-residing segmented filamentous bacteria drive autoimmune arthritis via T helper 17 cells. Immunity 2010; 32: 815-827. DOI:10.1016/j.immuni.2010.06.001.

7. McLoughlin R.M., Mills K. H. Influence of gastrointestinal commensal bacteria on the immune responses that mediate allergy and asthma. J Allergy Clin Immunol 2011; 127: 1097-107. quiz 1108-9. DOI:10.1016/j.jaci.2011.02.012.

8. Torano E. G., Garcia M. G., Fernandez-Morera J.L. et al. The Impact of External Factors on the Epigenome: In Utero and over Lifetime. Biomed Res Int 2016: s2568635. DOI:10.1155/2016/2568635.

9. Kumar H., Lund R., Laiho A. et al. Gut microbiota as an epigenetic regulator: pilot study based on whole-genome methylation analysis. MBio 2014; 5: e02113-14. DOI:10.1128/mBio.02113-14.

10. Krautkramer K. A., Kreznar J. H., Romano K. A. et al. Diet-Microbiota Interactions Mediate Global Epigenetic Programming in Multiple Host Tissues. Mol Cell 2016; 64: 982-92. DOI:10.1016/j.molcel.2016.10.025.

11. Lara E., Calvanese V., Fernandez A. F., Fraga M. F. Techniques to Study DNA Methylation and Histone Modification. Springer: London 2011; pp:21-39.

12. Arumugam M., Raes J., Pelletier E. et al. Enterotypes of the human gut microbiome. Nature 2011;473:174-180. DOI:10.1038/nature09944.

13. Eloe-Fadrosh E.A., Rasko D. A. The human microbiome: from symbiosis to pathogenesis. Ann Rev Med 2013;64:145-163. DOI:10.1146/annurev-med-010312-133513.

14. Murray MPJ. Encyclopedia of natural medicine, 1988.

15. Hawrelak J. A., Myers S. P. The causes of intestinal dysbiosis: a review. Altern Med Rev 2004; 9:180-197. PMID:15253677.

16. Carding S., Verbeke K., Vipond D. T. et al. Dysbiosis of the gut microbiota in disease. Microb Ecol Health Dis 2015; 26: 26191. DOI:10.3402/mehd.v26.26191.

17. Strauss J., Kaplan G. G., Beck P. L. et al. Invasive potential of gut mucosa-derived Fusobacterium nucleatum positively correlates with IBD status of the host. Inflamm Bowel Dis 2011;17:1971-1978. DOI:10.1002/ibd.21606.

18. Brown K., DeCoffe D., Molcan E., Gibson D. L. Diet-induced dysbiosis of the intestinal microbiota and the effects on immunity and disease. Nutrients 2012;4:1095-1119. DOI:10.3390/nu4081095.

19. Tanaka S., Kobayashi T., Songjinda P. et al. Influence of antibiotic exposure in the early postnatal period on the development of intestinal microbiota. FEMS Immunol Med Microbiol 2009;56:80-87. DOI: https://doi.org/10.1111/j.1574-695X.2009.00553.x.

20. O’Mahony S.M., Marchesi J. R., Scully P. et al. Early life stress alters behavior, immunity, and microbiota in rats: implications for irritable bowel syndrome and psychiatric illnesses. Biol Psychiatry 2009;65:263-7. DOI:10.1016/j.biopsych.2008.06.026.

21. Carrillo-Salinas F.J., Mestre L., Mecha M. et al. Gut dysbiosis and neuroimmune responses to brain infection with Theiler’s murine encephalomyelitis virus. Sci Rep 2017;7:44377. DOI:10.1038/srep44377

22. Zechner E. L. Inflammatory disease caused by intestinal pathobionts. Curr Opin Microbiol 2017;35:64-69. DOI:10.1016/j.mib.2017.01.011.

23. Lerner A., Aminov R., Matthias T. Transglutaminases in Dysbiosis As Potential Environmental Drivers of Autoimmunity. Front Microbio 2017; 8: 66. DOI:10.3389/fmicb.2017.00066.

24. Fukuda S., Toh H., Hase K. et al. Bifidobacteria can protect from enteropathogenic infection through production of acetate. Nature 2011;469:543-547. doi: 10.1038/nature09646.

25. Vindigni S. M., Zisman T. L., Suskind D.L, Damman C. J. The intestinal microbiome, barrier function, and immune system in inflammatory bowel disease: a tripartite pathophysiological circuit with implications for new therapeutic directions. Therap Adv Gastroenterol 2016;9:606-25. DOI:10.1177/1756283X16644242.

26. Jiang C., Li G., Huang P. et al. The Gut Microbiota and Alzheimer’s Disease. J Alzheimers Dis 2017;58(1):1-15. DOI:10.3233/JAD-161141.

27. Tang W. H., Kitai T., Hazen S. L. Gut Microbiota in Cardiovascular Health and Disease. Circ Res 2017; 120: 1183-1196. DOI:10.1161/CIRCRESAHA.117.309715.

28. Durgan D. J. Obstructive Sleep Apnea-Induced Hypertension: Role of the Gut Microbiota. Curr Hypertens Rep 2017;19: 35. DOI:10.1007/s11906-017-0732-3.

29. Nicolas S., Blasco-Baque V., Fournel A. et al. Transfer of dysbiotic gut microbiota has beneficial effects on host liver metabolism. Mol Syst Biol 2017;13:921.DOI:10.15252/msb.20167356.

30. Sen T., Cawthon C. R., Ihde B. T. et al. Diet-driven microbiota dysbiosis is associated with vagal remodeling and obesity. Physiol Behav 2017;173:305-317. DOI:10.1016/j.physbeh.2017.02.027.

31. Olszak T., An D., Zeissig S. et al. Microbial exposure during early life has persistent effects on natural killer T cell function. Science 2012;336:489-493. DOI:10.1126/science.1219328.

32. Cohen N. R., Garg S., Brenner M. B. Antigen Presentation by CD1 Lipids, T Cells, and NKT Cells in Microbial Immunity. Adv Immunol 2009; 102: 1-94. DOI:10.1016/S0065-2776(09)01201-2.

33. Matloubian M., David A., Engel S. et al. A transmembrane CXC chemokine is a ligand for HIV-coreceptor Bonzo. Nat Immunol 2000;1:298-304. DOI:10.1038/79738.

34. David L. A., Maurice C. F., Carmody R. N. et al. Diet rapidly and reproducibly alters the human gut microbiome. Nature 2014;505:559-563. DOI:10.1038/nature12820.

35. Jeffery I. B., O’Toole P. W. Diet-microbiota interactions and their implications for healthy living. Nutrients 2013;5:234-252. DOI:10.3390/nu5010234.

36. LeBlanc J.G., Milani C., de Giori G. S. et al. Bacteria as vitamin suppliers to their host: a gut microbiota perspective. Curr Opin Biotechnol 2013;24:160-168. DOI:10.1016/j.copbio.2012.08.005.

37. Shenderov B. A. Gut indigenous microbiota and epigenetics. Microb Ecol Health Dis.2012;23:17461.DOI:10.3402/mehd.v23i0.17195.

38. Penberthy W. T., Kirkland J. B. Present Knowledge in Nutrition: Wiley-Blackwell 2012; pp:293-306. DOI:10.1002/9781119946045.

39. Siudeja K., Srinivasan B., Xu L. et al. Impaired Coenzyme A metabolism affects histone and tubulin acetylation in Drosophila and human cell models of pantothenate kinase associated neurodegeneration. EMBO Mol Med 2011;3:755-766. DOI:10.1002/emmm.201100180.

40. Cluntun A. A., Huang H., Dai L. et al. The rate of glycolysis quantitatively mediates specific histone acetylation sites. Cancer Metab 2015;3:10. DOI:10.3402/mehd.v24i0.20399.

41. Shenderov B. A. Metabiotics: novel idea or natural development of probiotic conception. Microb Ecol Health Dis 2013;24:20399.DOI: 10.3402/mehd.v24i0.20399.

42. Zempleni J. Uptake, localization, and noncarboxylase roles of biotin. Annu Rev Nutr 2005;25:175-196. DOI:10.1146/annurev.nutr.25.121304.131724.

43. Crider K. S., Yang T. P., Berry R. J., Bailey L. B. Folate and DNA Methylation: A Review of Molecular Mechanisms and the Evidence for Folate’s Role. Adv Nutr Int Rev J 2012;3:21-38. DOI:10.3945/an.111.000992.

44. Pompei A., Cordisco L., Amaretti A. et al. Folate Production by Bifidobacteria as a Potential Probiotic Property. Appl Environ Microbiol 2007;73:179-185. DOI:10.1128/AEM.01763-06.

45. Strozzi G. P., Mogna L. Quantification of folic acid in human feces after administration of Bifidobacterium probiotic strains. J Clin Gastroenterol 2008;2: S179-S184.DOI:10.1097/MCG.0b013e31818087d8.

46. Oommen A. M., Griffin J. B., Sarath G., Zempleni J. Roles for nutrients in epigenetic events. J Nutr Biochem 2005;16:747-747. DOI:10.1016/j.jnutbio.2004.08.004.

47. Nagy-Szakal D., Ross M. C., Dowd S. E. et al. Maternal micronutrients can modify colonic mucosal microbiota maturation in murine offspring. Gut Microbes 2012;3:426-433. DOI:10.4161/gmic.20697.

48. Macfarlane G. T., Macfarlane S. Bacteria, colonic fermentation, and gastrointestinal health. J AOAC Int 2012; 95(1): 50-60. PMID:22468341.

49. Wong J. M., de Souza R., Kendall C. W. Colonic health: fermentation and short chain fatty acids. J Clin Gastroenterol 2006;40:235-243. DOI:10.1097/00004836-200603000-00015.

50. Cummings J. H., Macfarlane G. T. Colonic microflora: nutrition and health. Nutrition (Burbank, Los Angeles County, Calif) 1997;13:476-478.

51. Cummings J. H., Pomare E. W., Branch W. J. Short chain fatty acids in human large intestine, portal, hepatic and venous blood. Gut 1987;28:1221-1227.

52. Morrison D. J., Preston T. Formation of short chain fatty acids by the gut microbiota and their impact on human metabolism. Gut Microbes 2016;7:189-200. DOI:10.1080/19490976.2015.1134082.

53. Ye J. Improving insulin sensitivity with HDAC inhibitor. Diabetes. 2013; 62: 685-687. DOI:10.2337/db12-1354

54. Soliman M. L., Rosenberger T. A. Acetate supplementation increases brain histone acetylation and inhibits histone deacetylase activity and expression. Mol Cell Biochem 2011;352:173-180. DOI:10.1007/s11010-011-0751-3.

55. Soliman M. L., Smith M. D., Houdek H. M., Rosenberger TA. Acetate supplementation modulates brain histone acetylation and decreases interleukin-1β expression in a rat model of neuroinflammation. J Neuroinflammation 2012; 9: 51. DOI:10.1186/1742-2094-9-51.

56. Wang J., Tang H., Zhang C. et al. Modulation of gut microbiota during probiotic-mediated attenuation of metabolic syndrome in high fat diet-fed mice. ISME J 2015;9:1-15.DOI:10.1038/ismej.2014.99.

57. Fofanova T. Y., Petrosino J. F., Kellermayer R. Microbiome-Epigenome Interactions and the Environmental Origins of Inflammatory Bowel Diseases. J Pediatr Gastroenterol Nutr 2016;62:208-219. DOI:10.1097/MPG.0000000000000950.

58. Berni Canani R., Di Costanzo M., Leone L. The epigenetic effects of butyrate: potential therapeutic implications for clinical practice. Clin Epigent 2012;4:4. DOI:10.1186/1868-7083-4-4.

59. Tachibana K., Sakurai K., Watanabe M. et al. Associations between changes in the maternal gut microbiome and differentially methylated regions of diabetes-associated genes in fetuses: A pilot study from a birth cohort study. J Diabetes Investig. 2017; 8(4):550-553. DOI:10.1111/jdi.12598.

60. Puddu A., Sanguineti R., Montecucco F., Viviani G. L. Evidence for the gut microbiota short-chain fatty acids as key pathophysiological molecules improving diabetes. Mediators of Inflammation 2014;162021. DOI:10.1155/2014/162021.

61. Duranton B., Keith G., Goss. et al. Concomitant changes in polyamine pools and DNA methylation during growth inhibition of human colonic cancer cells. Exp Cell Res 1998;243:319-325.

62. Schwiertz A. Microbiota and SCFA in lean and overweight healthy subjects. Obesity 2009;187:190-195.DOI:10.1038/oby.2009.167.

63. Maslowski K. M., Vieira A. T., Ng A. et al. Regulation of inflammatory responses by gut microbiota and chemoattractant receptor GPR43. Nature 2009; 461:1282-1286. DOI:10.1038/nature08530.

64. Remely M., Aumueller E., Merold C. et al. Effects of short chain fatty acid producing bacteria on epigenetic regulation of FFAR3 in type 2 diabetes and obesity. Gene 2014;537:85-92. DOI:10.1016/j.gene.2013.11.081.

65. Louis P., Flint H. J. Diversity, metabolism and microbial ecology of butyrate-producing bacteria from the human large intestine. FEMS Microbiol Lett 2009;294:1-8. DOI:10.1111/j.1574-6968.2009.01514.x.

66. Wang W., Chen L., Zhou R. et al. Increased proportions of Bifidobacterium and the Lactobacillus group and loss of butyrate-producing bacteria in inflammatory bowel disease. J Clin Microbiol 2014;52:398-406. DOI:10.1128/JCM.01500-13.

67. Nugent J. L., McCoy A.N., Addamo C. J. et al. Altered tissue metabolites correlate with microbial dysbiosis in colorectal adenomas. J Proteome Res 2014; 13:1921-1929. DOI:10.1021/pr4009783.

68. Rykova E. Y., Tsvetovskaya G. A., Sergeeva G. I. et al. Methylation-based analysis of circulating DNA for breast tumor screening. Ann N Y Acad Sci 2008;1137:232-235.

69. Gagniere J., Raisch J., Veziant J. et al. Gut microbiota imbalance and colorectal cancer. World J Gastroenterol 2016;22:501-518. DOI:10.3748/wjg.v22.i2.501.

70. Dickson I. Gut microbiota: Diagnosing IBD with the gut microbiome. Nat Rev Gastroenterol Hepatol 2017;14:195. DOI:10.1038/nrgastro.2017.25.

71. Nakatsu G., Li X., Zhou H. et al. Gut mucosal microbiome across stages of colorectal carcinogenesis. Nat Commun 2015; 6: 8727. DOI:10.1038/ncomms9727.

72. Gevers D., Kugathasan S., Knights D. et al. A Microbiome Foundation for the Study of Crohn’s Disease. Cell Host Microbe 2017;21:301-304. DOI:10.1016/j.chom.2017.02.012.

73. Gevers D., Kugathasan S., Denson L. A. et al. The treatment-naive microbiome in new-onset Crohn’s disease. Cell Host Microbe 2014;15:382-392. DOI:10.1016/j.chom.2014.02.005.

74. Vrieze A., Van Nood E., Holleman F. et al. Transfer of intestinal microbiota from lean donors increases insulin sensitivity in individuals with metabolic syndrome. Gastroenterology 2012;143:913-6.e7. DOI:10.1053/j.gastro.2012.06.031.


Review

For citations:


Aitbaev K.A., Murkamilov I.T., Fomin V.V., Murkamilova Zh.A. INFLUENCE OF GUT MICROBIOTA ON EPIGENETICS: MECHANISMS, ROLE IN THE DEVELOPMENT OF DISEASES, DIAGNOSTIC AND THERAPEUTIC POTENTIAL. Experimental and Clinical Gastroenterology. 2018;(6):122-129. (In Russ.)

Views: 297


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1682-8658 (Print)