Preview

Experimental and Clinical Gastroenterology

Advanced search

HELICOBACTER PYLORI PHOTODYNAMIC INACTIVATION IN VITRO WITH ZINC OCTAKIS (CHOLINYL) PHTHALOCYANINE

Abstract

Helicobacter pylori, an etiopathogenetic factor of gastritis and gastric and duodenal ulcer disease, is highly sensitive in vitro to antimicrobial photodynamic therapy with zinc octakis(cholinyl)phthalocyanine (o-PCZ). The photosensitizing activity of o-PCZ with molecules bearing eight positively charged substituents, is due to electrostatic binding with negatively charged surface of the cell walls of bacteria. In the bound state, when excited by light, o-PCZ generates singlet oxygen, which has a bactericidal effect. Intensive absorption of o-PCZ in the far-red region of the spectrum allows to use in photodynamic therapy light of wavelengths with high penetrating capacity in the biological environment from led sources.

About the Authors

V. G. Zhukhovitsky
Gamaleya National Research Centre for Epidemiology and Microbiology, Ministry of Public Health; Sechenov The First Moscow Medical University, Ministry of Public Health
Russian Federation


E. G. Kholina
Lomonosov Moscow State University
Russian Federation


M. G. Strakhovskaya
Lomonosov Moscow State University; Federal Research and Clinical Center of Specialized Medical Care and Medical Technologies, Federal Medical and Biological Agency of Russia
Russian Federation


References

1. Eusebi L.H., Zagari R. M., Bazzoli F. Epidemiology of Helicobacter pylori infection // Helicobacter. - 2014. - v. 19. - Suppl. 1. - P. 1-5.

2. Amieva M. R., El-Omar E. M. Host-bacterial interactions in Helicobacter pylori infection // Gastroenterology. - 2008. - v. 134. - P. 306-323.

3. Wroblewski L.E., Peek R. M., Wilson K. T. Helicobacter pylori and gastric cancer: factors that modulate disease risk // Clin. Microbiol. Rev. - 2010. - v. 23. - P. 713-739.

4. Kyburz A., Müller A. Helicobacter pylori and extragastric diseases // Curr. Top. Microbiol. Immunol. - 2017. - v. 400. - P. 325-347. doi: 10.1007/978-3-319-50520-6_14.

5. Salama N.R., Hartung M. L., Müller A. Life in the human stomach: persistence strategies of the bacterial pathogen Helicobacter pylori // Nat. Rev. Microbiol. - 2013. - v. 11. - No 6. - P. 385-399.

6. Yuan Y., Ford A. C., Khan K. J. et al. Optimal duration of regimens for Helicobacter pylori eradication // Cochrane Database Syst. Rev. - 2013. - v. 12. - CD008337. doi: 10.1002/14651858.CD008337.pub2

7. Malfertheiner P., Megraud F., O’Morain C. et al. Management of Helicobacter pylori infection - the Maastricht V / Florence consensus report // Gut. - 2017. - v. 66. - № 1. - P. 6-30. doi:10.1136/gutjnl-2016-312288.

8. De Francesco V., Bellesia A., Ridola L. et al. First-line therapies for Helicobacter pylori eradication: a critical reappraisal of updated guidelines // Ann. Gastroenterol. - 2017. - v. 30. - P. 373-379.

9. Graham D.Y, Fischbach L. Helicobacter pylori treatment in the era of increasing antibiotic resistance // Gut. - 2010. - v. 59. - № 8. - P. 1143-1153.

10. Mégraud F. Antimicrobial resistance and approaches to treatment. In: Sutton P., Mitchell H. M. (eds.). “Helicobacter pylori in the 21st century”. - 2010. - CAB International, Oxfordshire, UK. - 302 P. - P. 45-68.

11. Pellicano R., Ribaldone D. G., Fagoonee S. et al. A 2016 panorama of Helicobacter pylori infection: key messages for clinicians // Panminerva Medica. - 2016. - v. 58. - № 4. - P. 304-317.

12. Sperandio F.F., Huang Y. Y., Hamblin M. R. Antimicrobial photodynamic therapy to kill Gram-negative bacteria // Rec. Pat. Antiinfect. Drug Discov. - 2013. - v. 8. - № 2. - P. 108-120.

13. Jemli M., Alouini Z., Sabbahi S., Gueddari M. Destruction of fecal bacteria in wastewater by three photosensitizers // J. Environ. Monit. - 2002. - v. 4. - № 4. - Р. 511-516.

14. Marciel L., Teles L., Moreira B. et al. An effective and potentially safe blood disinfection protocol using tetrapyrrolic photosensitizers // Future Med. Chem. - 2017. - v. 9. - № 4. - P. 365-379.

15. Jori G., Fabris C., Soncin M. et al. Photodynamic therapy in the treatment of microbial infections: basic principles and perspective applications // Lasers Surg. Med. - 2006. - v. 38. - № 5. - Р. 468-481.

16. Wainwright M., Maisch T., Nonell S. et al. Photoantimicrobials - are we afraid of the light? // Lancet Infect. Dis. - 2017. - v. 17. - № 2. - Р. e49 - e55.

17. Karlyshev A.V., Ketley J. M., Wren B. W. The Campylobacter jejuni glycome // FEMS Microbiol. Rev. - 2005. - v. 29. - № 2. - P. 377-390.

18. Nikaido H. Molecular basis of bacterial outer membrane permeability revisited // Microbiol. Mol. Biol. Rev. - 2003. - v. 67. - № 4. - Р. 593-656.

19. Maisch T. A new strategy to destroy antibiotic resistant microorganisms: antimicrobial photodynamic treatment // Mini Rev. Med. Chem. - 2009. - v. 9. - № 8. - Р. 974-983.

20. Страховская М.Г., Антоненко Ю. Н., Пашковская А. А. и соавт. Электростатическое связывание замещенных металло-фталоцианинов с клетками энтеробактерий: роль в фотодинамической инактивации // Биохимия. - 2009. - т. 74. - № 12. - С. 1603-1614.

21. Strakhovskaya M. G., Antonenko Y. N., Pashkovskaya A. A., Kotova E. A., Kireev V., Zhukhovitsky V. G., Kuznetsova N. A., Yuzhakova O. A., Negrimovsky V. M., and Rubin A. B. Electro-static binding of substituted metal phthalocyanines to enterobacte-rial cells: Its role in photodynamic inactivation. Biochemistry (Moscow). 2009;74(12):1305-1314.

22. Zhang W., Shi X., Huang J. et al. Bacitracin-conjugated superparamagnetic iron oxide nanoparticles: synthesis, characterization and antibacterial activity // Chemphyschem. - 2012. - v. 13. - № 14. - P. 3388-3396.

23. Soon R.L., Nation R. L., Cockram S.et al. Different surface charge of colistin-susceptible and -resistant Acinetobacter baumannii cells measured with zeta potential as a function of growth phase and colistin treatment // J. Antimicrob. Chemother. - 2011. - v. 66. - № 1. - Р. 126-133.

24. Nguyen V.T., Turner M. S., Dykes G. A. Influence of cell surface hydrophobicity on attachment of Campylobacter to abiotic surfaces // Food Microbiol. - 2011. - v. 28. - № 5. - P. 942-950.

25. Parreira P., Magalhães A., Gonçalves I. C. et al. Effect of surface chemistry on bacterial adhesion, viability, and morphology // J. Biomed. Mater. Res. Part A. - 2011. - v. 99. - № 3. - P. 344-353.

26. Ma H., Cummins D. D., Edelstein N. B. et al. Modeling diversity in structures of bacterial outer membrane lipids // J. Chem. Theory Comput. - 2017. - v. 13. - № 2. - P. 811-824.

27. Stephenson H.N., John C. M., Naz N. et al. // J. Biol. Chem. - 2013. - v. 288. - № 27. - P. 19661-19672.

28. Safavi M., Sabourian R., Foroumadi A. Treatment of Helicobacter pylori infection: Current and future insights // World J. Clin. Cases. - 2016. - v. 4. - № 1. - P. 5-19.

29. Simon C., Mohrbacher C., Hüttenberger D. et al. In vitro studies of different irradiation conditions for photodynamic inactivation of Helicobacter pylori. J. Photochem. Photobiol. B. - 2014. - v. 141. - P. 113-118.

30. Holst O., Moran A. P., Brenan P. J. Overview of the glycosylated components of the bacterial cell envelope // In: Moran A. P. “Microbial glycobiology” (ed.-in-chief), Elsevier, Amsterdam … Tokyo, 2009, 1016 pp. - P. 3-13.


Review

For citations:


Zhukhovitsky V.G., Kholina E.G., Strakhovskaya M.G. HELICOBACTER PYLORI PHOTODYNAMIC INACTIVATION IN VITRO WITH ZINC OCTAKIS (CHOLINYL) PHTHALOCYANINE. Experimental and Clinical Gastroenterology. 2018;(6):10-15. (In Russ.)

Views: 449


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1682-8658 (Print)