Preview

Experimental and Clinical Gastroenterology

Advanced search

EXPERIMENTAL ANIMAL MODELS OF CROHN’S DISEASE

Abstract

Crohn’s disease (CD), a member of inflammatory bowel disease group (IBD), is a chronic relapsing disease of unknown origin. It is considered, that the pathogenesis of CD involves aberrant immune reactions in response to the pathogenic intestinal microflora, in particular opportunistic E. coli, but the exact cause of the disease still remains unknown. Therefore, the CD therapy depends on the stage of the disease and remains symptomatic. The most effective method for pathogenesis study of the CD and the selection of appropriate treatment is in vivo CD models. Today, there are more than sixty different animal models of CD, conventionally divided into four groups: chemical induction of the disease, the introduction of specific pathogen into model object, spontaneous occurrence of the disease in genetically modified animals and transplantation of immune system cells into immunodeficient animals.

About the Authors

Yu. P. Baykova
FSBIS RCPCM FMBA of Russia
Russian Federation


D. V. Rakitina
FSBIS RCPCM FMBA of Russia
Russian Federation


P. L. Shcherbakov
FSBIS RCPCM FMBA of Russia
Russian Federation


V. M. Govorun
FSBIS RCPCM FMBA of Russia
Russian Federation


References

1. Каркищенко Н.Н., Грачев С. В. Руководство по лабораторным животным и альтернативным моделям в биомедицинских исследованиях: учебное пособие для системы медицинского и фармацевтического послевузовского образования. - М.: Профиль, 2010. - 358 с.

2. Сидорчук А.А., Глушков А. А. Инфекционные болезни лабораторных животных. Учебное пособие, 1-е изд. - М.: Лань, 2009. -128 с.

3. Allan R.N., Rhodes J. M., Hanauer S. B. (eds) Inflammatory bowel diseases, 3rd edn. - London: Churchill Livingstone, 1997. - P. 863.

4. Barnich N. CEACAM6 acts as a receptor for adherent-invasive E. coli, supporting ileal mucosa colonization in Crohn disease / Barnich N., Carvalho F. A., Glasser A. L. et al. //J Clin Invest. - 2007. - № 6 (117). - P. 1566-1574.

5. Carvalho F. A. Crohn’s disease adherent-invasive Escherichia coli colonize and induce strong gut inflammation in transgenic mice expressing human CEACAM. // J Exp Med. - 2009. - № 10 (206). - P. 2179-89.

6. Corridonia D. Inflammatory bowel disease / Corridonia D., Arseneau K. O., Cominellia F. // Immunology Letters. - 2014. - № 2 (161). - P. 231-235.

7. Craven M. Inflammation drives dysbiosis and bacterial invasion in murine models of ileal Crohn’s disease / Craven M., Egan C. E., Dowd S. E. et al. // PLoS One. - 2012. - № 7 (7). - e41594. doi: 10.1371/journal.pone.0041594.

8. Eckburg P. B. Diversity of the human intestinal microbial flora / Eckburg P. B., Bik E. M., Bernstein C. N. et al. // Science. - 2005. - № 308 (5728). - P. 1635-1638.

9. Gevers D. The treatment-naive microbiome in new-onset Crohn’s disease / Gevers D., Kugathasan S., Denson L. A. et al. // Cell Host Microbe. - 2014. - № 3(15) - P. 382-392.

10. Golovics P. A. Inflammatory bowel disease course in Crohn’s disease: Is the natural history changing? / Golovics P. A., Mandel M. D., Lovasz B. D. et al. // World J Gastroenterol. - 2014. - № 12 (20). - P. 3198-3207.

11. Hale L. P. A novel murine model of inflammatory bowel disease and inflammation-associated colon cancer with ulcerative colitis-like features / Hale L. P., Greer P. K. // PLoS ONE. - 2012. -№ 7 (7). - e41797.doi:10.1371/journal.pone.0041797.

12. Kojima R. Oxazolone-induced colitis in BALB/C mice: a new method to evaluate the efficacy of therapeutic agents for ulcerative colitis / Kojima R., Kuroda S., Ohkishi T. et al. // J Pharmacol Sci. - 2004. - № 3 (96). - P. 307-313.

13. Laroux F. S. Regulation of chronic colitis in athymic nu/nu (nude) mice / Laroux F. S., Norris H. H., Houghton J. et al. // Int Immunol. - 2004. - № 1 (16). - P. 77-89.

14. Ley R. E. Obesity alters gut microbial ecology / Ley R. E., Bäckhed F., Turnbaugh P. et al. // Proc Natl Acad Sci U S A. -2005. - № 31(102). - P. 11070-11075.

15. Liao S. L. Maturation ofToll-like receptor 1-4 responsiveness during early life / Liao S. L., Yeh K. W., Lai S. H. et al. // Early Hum Dev. - 2013. - № 7 (89). - P. 473-478.

16. Louis E. From evidence-based medicine to personalized medicine in Crohn’s disease / Louis E., Reenaers C., Van Kemseke C. et al. // Rev Med Liege. - 2015. - № 5 (70). - P. 316-320.

17. Mahler M. Differential susceptibility of inbred mouse strains to dextran sulfate sodium-induced colitis / Mahler M., Bristol I. J., Leiter E. H. et al. // American Journal of Physiology. -1998. - № 3 (274). - P. 544-551.

18. Martinez-Medina M. Escherichia coli in chronic inflammatory bowel diseases: an update on adherent invasive Escherichia coli pathogenicity / Martinez-Medina M., Garcia-Gil L.J. // World J Gastrointest Pathophysiol. - 2014. - № 3(5). - P. 213-227.

19. Mizoguchi A. Animal models of inflammatory bowel disease. Progress in molecular biology and translational science // Prog Mol Biol Transl Sci. - 2012. - № 105. - P. 263-320.

20. Morampudi V. DNBS/TNBS colitis models: providing insights into inflammatory bowel disease and effects of dietary fat / Morampudi V., Bhinder G., Wu X. et al. // J. Vis. Exp. - 2014. - № 84. - e51297. doi: 10.3791/51297.

21. Nguyen T. L. A. How informative is the mouse for human gut microbiota research? / Nguyen T. L.A., Vieira-Silva S., Liston A., Raes J. // Dis Model Mech. - 2015. - № 1(8). - P. 1-16.

22. Pizarro T. T. SAMP1/YitFc mouse strain: a spontaneous model of Crohn’s disease-like ileitis / Pizarro T. T., Pastorelli L., Bamias G. et al. // Inflammatory bowel diseases. - 2011. - № 12 (17). - P. 2566-2584.

23. Powrie F. Inhibition of Th1 responses prevents inflammatory bowel disease in scid mice reconstituted with CD 45RBhi CD 4+ T cells / Powrie F., Leach M. W., Mauze S. et al. // Immunity. - 1994. - № 1(7). - P. 553-562.

24. Randhawa P. K. A review on chemical-induced inflammatory bowel disease models in rodents / Randhawa P. K., Singh K., Singh N. // Korean J Physiol. - 2014. - № 4 (18). - P. 279-88.

25. Reingold L. Development of a peptidoglycan-polysaccharide murine model of Crohn’s disease: effect of genetic background / Reingold L., Rahal K., Schmiedlin-Ren P. et al. // Inflamm Bowel Dis. - 2013. - № 6 (19). - P. 1238-1244.

26. Remond D. Intestinal inflammation increasesgastrointestinal threonine uptake and mucin synthesis in enterally fed minipigs / Remond D., Buffiere C., Godin J. et al. // J. Nutr. - 2009. -№ 4 (139). - P. 720-726.

27. Roulis M. Intestinal epithelial cells as producers but not targets of chronic TNF suffice to cause murine Crohn-like pathology / Roulis M., Armaka M., Manoloukos M. et al. // PNAS. - 2011. - № 13 (108). - P. 5396-5401.

28. Treuting P. M. Lower gastrointestinal tract / Treuting P. M., Dintzis S. M. // Comparative anatomy and histology. A mouse and human atlas, 1st edn. - 2012. - P. 177-192.

29. van Mierlo G. J. D. The minipig as an alternative non-rodent model for immunogenicity testing using the TNFα blockers adalimumab and infliximab / van Mierlo G. J.D., Cnubben N. H.P., Wouters D. et al. // J Immunotoxicol. - 2014. - № 1 (11). - P. 62-71.


Review

For citations:


Baykova Yu.P., Rakitina D.V., Shcherbakov P.L., Govorun V.M. EXPERIMENTAL ANIMAL MODELS OF CROHN’S DISEASE. Experimental and Clinical Gastroenterology. 2017;(5):33-38. (In Russ.)

Views: 334


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1682-8658 (Print)