Preview

Экспериментальная и клиническая гастроэнтерология

Расширенный поиск

Микробиота кишечника: потенциальные подходы к профилактике гипергомоцистеинемии при беременности

https://doi.org/10.31146/1682-8658-ecg-239-7-108-116

Аннотация

Гипергомоцистеинемия является распространенным акушерским осложнением. В настоящее время особый интерес исследователей вызывает взаимосвязь уровня гомоцистеина и состав микробиоты кишечника. Роль микробиоты кишечника на сегодняшний день изучается во многих физиологических и биохимических процессах в организме человека, в том числе при патологии. В контексте обмена метионина микробиота может участвовать в регуляции реакций метионинового цикла, а также в метаболизме и всасывании витаминов. Патологическая микробиота, возникающая при гипергомоцистеинемии, может способствовать развитию состояний, которые представляют угрозу беременности. Взаимозависимость микробиоты кишечника, гипергомоцистеинемии и сопутствующих акушерских осложнений имеет важное значение для диагностики и лечения этих заболеваний и вызывает интерес научного сообщества.

Об авторах

С. К. Бочковский
Федеральное государственное бюджетное научное учреждение «Научно-исследовательский институт акушерства, гинекологии и репродуктологии имени Д.О. Отта»
Россия


Ю. П. Милютина
Федеральное государственное бюджетное научное учреждение «Научно-исследовательский институт акушерства, гинекологии и репродуктологии имени Д.О. Отта»
Россия


А. В. Арутюнян
Федеральное государственное бюджетное научное учреждение «Научно-исследовательский институт акушерства, гинекологии и репродуктологии имени Д.О. Отта»
Россия


Список литературы

1. Marroncini G., Martinelli S., Menchetti S., Bombardiere F., Martelli F.S. Hyperhomocysteinemia and Disease-Is 10 mumol/L a Suitable New Threshold Limit? Int J Mol Sci. 2024;25(22). doi: 10.3390/ijms252212295.

2. Zaric B.L., Obradovic M., Bajic V., Haidara M.A., Jovanovic M., Isenovic E.R. Homocysteine and Hyperhomocysteinaemia. Curr Med Chem. 2019;26(16):2948-61. doi: 10.2174/0929867325666180313105949.

3. Kim J., Kim H., Roh H., Kwon Y. Causes of hyperhomocysteinemia and its pathological significance. Arch Pharm Res. 2018;41(4):372-83. doi: 10.1007/s12272-018-1016-4.

4. Guieu R., Ruf J., Mottola G. Hyperhomocysteinemia and cardiovascular diseases. Ann Biol Clin (Paris). 2022;80(1):7-14. doi: 10.1684/abc.2021.1694.

5. Du X., Ma X., Tan Y. et al. B cell-derived anti-beta 2 glycoprotein I antibody mediates hyperhomocysteinemia-aggravated hypertensive glomerular lesions by triggering ferroptosis. Signal Transduct Target Ther. 2023;8(1):103. doi: 10.1038/s41392-023-01313-x.

6. Sharma M., Tiwari M., Tiwari R.K. Hyperhomocysteinemia: Impact on Neurodegenerative Diseases. Basic Clin Pharmacol Toxicol. 2015;117(5):287-96. doi: 10.1111/bcpt.12424.

7. Arutjunyan A.V., Kerkeshko G.O., Milyutina Y.P., Shcherbitskaia A.D., Zalozniaia I.V. Prenatal Stress in Maternal Hyperhomocysteinemia: Impairments in the Fetal Nervous System Development and Placental Function. Biochemistry (Mosc). 2021;86(6):716-28. doi: 10.1134/S0006297921060092.

8. Shcherbitskaia A.D., Vasilev D.S., Milyutina Y.P. et al. Prenatal Hyperhomocysteinemia Induces Glial Activation and Alters Neuroinflammatory Marker Expression in Infant Rat Hippocampus. Cells. 2021;10(6). doi: 10.3390/cells10061536.

9. Kalani A., Kamat P.K., Voor M.J., Tyagi S.C., Tyagi N. Mitochondrial epigenetics in bone remodeling during hyperhomocysteinemia. Mol Cell Biochem. 2014;395(1-2):89-98. doi: 10.1007/s11010-014-2114-3.

10. Stanisic D., George A.K., Smolenkova I., Singh M., Tyagi S.C. Hyperhomocysteinemia: an instigating factor for periodontal disease. Can J Physiol Pharmacol. 2021;99(1):115-23. doi: 10.1139/cjpp-2020-0224.

11. Yakovlev A.V., Kurmashova E., Gataulina E., Gerasimova E., Khalilov I., Sitdikova G.F. Maternal hyperhomocysteinemia increases seizures susceptibility of neonatal rats. Life Sci. 2023;329:121953. doi: 10.1016/j.lfs.2023.121953.

12. Ferrazzi E., Tiso G., Di Martino D. Folic acid versus 5-methyl tetrahydrofolate supplementation in pregnancy. Eur J Obstet Gynecol Reprod Biol. 2020;253:312-9. doi: 10.1016/j.ejogrb.2020.06.012.

13. Agostini D., Bartolacci A., Rotondo R. et al. Homocysteine, Nutrition, and Gut Microbiota: A Comprehensive Review of Current Evidence and Insights. Nutrients. 2025;17(8). doi: 10.3390/nu17081325.

14. Wan Z., Zheng J., Zhu Z. et al.Intermediate role of gut microbiota in vitamin B nutrition and its influences on human health. Front Nutr. 2022;9:1031502. doi: 10.3389/fnut.2022.1031502.

15. Zheng X., Xia C., Liu M. et al. Role of folic acid in regulating gut microbiota and short-chain fatty acids based on an in vitro fermentation model. Appl Microbiol Biotechnol. 2024;108(1):40. doi: 10.1007/s00253-023-12825-5.

16. Chen C.J., Cheng M.C., Hsu C.N., Tain Y.L. Sulfur-Containing Amino Acids, Hydrogen Sulfide, and Sulfur Compounds on Kidney Health and Disease. Metabolites. 2023;13(6). doi: 10.3390/metabo13060688.

17. Cheng C.K., Wang C., Shang W. et al. A high methionine and low folate diet alters glucose homeostasis and gut microbiome. Biochem Biophys Rep. 2021;25:100921. doi: 10.1016/j.bbrep.2021.100921.

18. Li W., Jia Y., Gong Z. et al. Ablation of the gut microbiota alleviates high-methionine diet-induced hyperhomocysteinemia and glucose intolerance in mice. NPJ Sci Food. 2023;7(1):36. doi: 10.1038/s41538-023-00212-3.

19. Xu C.C., Zhao W.X., Sheng Y. et al. Serum homocysteine showed potential association with cognition and abnormal gut microbiome in major depressive disorder. World J Psychiatry. 2025;15(3):102567. doi: 10.5498/wjp.v15.i3.102567.

20. Mayengbam S., Chleilat F., Reimer R.A. Dietary Vitamin B6 Deficiency Impairs Gut Microbiota and Host and Microbial Metabolites in Rats. Biomedicines. 2020;8(11). doi: 10.3390/biomedicines8110469.

21. Guetterman H.M., Huey S.L., Knight R., Fox A.M., Mehta S., Finkelstein J.L. Vitamin B-12 and the Gastrointestinal Microbiome: A Systematic Review. Adv Nutr. 2022;13(2):530-58. doi: 10.1093/advances/nmab123.

22. Magnusdottir S., Ravcheev D., de Crecy-Lagard V., Thiele I. Systematic genome assessment of B-vitamin biosynthesis suggests co-operation among gut microbes. Front Genet. 2015;6:148. doi: 10.3389/fgene.2015.00148.

23. Miki T., Goto R., Fujimoto M., Okada N., Hardt W.D. The Bactericidal Lectin RegIIIbeta Prolongs Gut Colonization and Enteropathy in the Streptomycin Mouse Model for Salmonella Diarrhea. Cell Host Microbe. 2017;21(2):195-207. doi: 10.1016/j.chom.2016.12.008.

24. Liu S., Tun H.M., Leung F.C., Bennett D.C., Zhang H., Cheng K.M.Interaction of genotype and diet on small intestine microbiota of Japanese quail fed a cholesterol enriched diet. Sci Rep. 2018;8(1):2381. doi: 10.1038/s41598-018-20508-9.

25. Shen Y., Xu J., Li Z. et al. Analysis of gut microbiota diversity and auxiliary diagnosis as a biomarker in patients with schizophrenia: A cross-sectional study. Schizophr Res. 2018;197:470-7. doi: 10.1016/j.schres.2018.01.002.

26. Ferrer M., Ruiz A., Lanza F. et al. Microbiota from the distal guts of lean and obese adolescents exhibit partial functional redundancy besides clear differences in community structure. Environ Microbiol. 2013;15(1):211-26. doi: 10.1111/j.1462-2920.2012.02845.x.

27. Qing W., Chen H., Ma X. et al. Gut dysbiosis-induced vitamin B6 metabolic disorder contributes to chronic stress-related abnormal behaviors in a cortisol-independent manner. Gut Microbes. 2025;17(1):2447824. doi: 10.1080/19490976.2024.2447824.

28. Li P., Gu Q., Wang Y., Yu Y., Yang L., Chen J.V. Novel vitamin B(12)-producing Enterococcus spp. and preliminary in vitro evaluation of probiotic potentials. Appl Microbiol Biotechnol. 2017;101(15):6155-64. doi: 10.1007/s00253-017-8373-7.

29. Gu Q., Zhang C., Song D., Li P., Zhu X. Enhancing vitamin B12 content in soy-yogurt by Lactobacillus reuteri.Int J Food Microbiol. 2015;206:56-9. doi: 10.1016/j.ijfoodmicro.2015.04.033.

30. Degnan P.H., Taga M.E., Goodman A.L. Vitamin B12 as a modulator of gut microbial ecology. Cell Metab. 2014;20(5):769-78. doi: 10.1016/j.cmet.2014.10.002.

31. Kundra P., Greppi A., Duppenthaler M. et al. Vitamin B12 analogues from gut microbes and diet differentially impact commensal propionate producers of the human gut. Front Nutr. 2024;11:1360199. doi: 10.3389/fnut.2024.1360199.

32. Quigley E.M.M., Murray J.A., Pimentel M. AGA Clinical Practice Update on Small Intestinal Bacterial Overgrowth: Expert Review. Gastroenterology. 2020;159(4):1526-32. doi: 10.1053/j.gastro.2020.06.090.

33. Kundra P., Geirnaert A., Pugin B., Morales Martinez P., Lacroix C., Greppi A. Healthy adult gut microbiota sustains its own vitamin B12 requirement in an in vitro batch fermentation model. Front Nutr. 2022;9:1070155. doi: 10.3389/fnut.2022.1070155.

34. Al-Musharaf S., Aljuraiban G.S., Al-Ajllan L. et al. Vitamin B12 Status and Gut Microbiota among Saudi Females with Obesity. Foods. 2022;11(24). doi: 10.3390/foods11244007.

35. Hardlei T.F., Obeid R., Herrmann W., Nexo E. Cobalamin analogues in humans: a study on maternal and cord blood. PLoS One. 2013;8(4): e61194. doi: 10.1371/journal.pone.0061194.

36. Qi X., Zhang Y., Zhang Y. et al. Vitamin B(12) produced by Cetobacterium somerae improves host resistance against pathogen infection through strengthening the interactions within gut microbiota. Microbiome. 2023;11(1):135. doi: 10.1186/s40168-023-01574-2.

37. Forgie A.J., Pepin D.M., Ju T. et al. Over supplementation with vitamin B12 alters microbe-host interactions in the gut leading to accelerated Citrobacter rodentium colonization and pathogenesis in mice. Microbiome. 2023;11(1):21. doi: 10.1186/s40168-023-01461-w.

38. Schreiner P., Martinho-Grueber M., Studerus D. et al. Nutrition in Inflammatory Bowel Disease. Digestion. 2020;101 Suppl 1:120-35. doi: 10.1159/000505368.

39. Herfarth H.H., Kappelman M.D., Long M.D., Isaacs K.L. Use of Methotrexate in the Treatment of Inflammatory Bowel Diseases. Inflamm Bowel Dis. 2016;22(1):224-33. doi: 10.1097/MIB.0000000000000589.

40. Battat R., Kopylov U., Szilagyi A. et al. Vitamin B12 deficiency in inflammatory bowel disease: prevalence, risk factors, evaluation, and management. Inflamm Bowel Dis. 2014;20(6):1120-8. doi: 10.1097/MIB.0000000000000024.

41. Green R., Allen L.H., Bjorke-Monsen A.L. et al. Vitamin B(12) deficiency. Nat Rev Dis Primers. 2017;3:17040. doi: 10.1038/nrdp.2017.40.

42. Boachie J., Adaikalakoteswari A., Samavat J., Saravanan P. Low Vitamin B12 and Lipid Metabolism: Evidence from Pre-Clinical and Clinical Studies. Nutrients. 2020;12(7). doi: 10.3390/nu12071925.

43. Rogne T., Tielemans M.J., Chong M.F. et al. Associations of Maternal Vitamin B12 Concentration in Pregnancy With the Risks of Preterm Birth and Low Birth Weight: A Systematic Review and Meta-Analysis of Individual Participant Data. Am J Epidemiol. 2017;185(3):212-23. doi: 10.1093/aje/kww212.

44. Han W., Li M., Yang M. et al. Dietary Folic Acid Supplementation Inhibits HighFat DietInduced Body Weight Gain through Gut Microbiota-Associated Branched-Chain Amino Acids and Mitochondria in Mice. J Nutr Sci Vitaminol (Tokyo). 2023;69(2):105-20. doi: 10.3177/jnsv.69.105.

45. Chen S., Yang M., Wang R. et al. Suppression of high-fat-diet-induced obesity in mice by dietary folic acid supplementation is linked to changes in gut microbiota. Eur J Nutr. 2022;61(4):2015-31. doi: 10.1007/s00394-021-02769-9.

46. Liu Y., Yang J., Liu X. et al. Dietary folic acid addition reduces abdominal fat deposition mediated by alterations in gut microbiota and SCFA production in broilers. Anim Nutr. 2023;12:54-62. doi: 10.1016/j.aninu.2022.08.013.

47. Liu X., Wang C., Li Y. et al. Fecal microbiota transplantation revealed the function of folic acid on reducing abdominal fat deposition in broiler chickens mediated by gut microbiota. Poult Sci. 2024;103(3):103392. doi: 10.1016/j.psj.2023.103392.

48. Zhang H., Wang Y., Zhang X. et al. Maternal Folic Acid Supplementation during Pregnancy Prevents Hepatic Steatosis in Male Offspring of Rat Dams Fed High-Fat Diet, Which Is Associated with the Regulation of Gut Microbiota. Nutrients. 2023;15(22). doi: 10.3390/nu15224726.

49. Mjaaseth U.N., Norris J.C., Aardema N.D.J. et al. Excess Vitamins or Imbalance of Folic Acid and Choline in the Gestational Diet Alter the Gut Microbiota and Obesogenic Effects in Wistar Rat Offspring. Nutrients. 2021;13(12). doi: 10.3390/nu13124510.

50. Wang S., He X., Wang Y. et al.Intergenerational association of gut microbiota and metabolism with perinatal folate metabolism and neural tube defects. iScience. 2023;26(9):107514. doi: 10.1016/j.isci.2023.107514.

51. Miao Y., Li X., Yuan X.X. et al. [Effect of the correlation between gut microbiota and folic acid in first-episode schizophrenia]. Zhonghua Yi Xue Za Zhi. 2021;101(37):3012-7. doi: 10.3760/cma.j.cn112137-20210311-00612.

52. Fan Y., Pedersen O. Gut microbiota in human metabolic health and disease. Nat Rev Microbiol. 2021;19(1):55-71. doi: 10.1038/s41579-020-0433-9.

53. Romani-Perez M., Bullich-Vilarrubias C., Lopez-Almela I., Liebana-Garcia R., Olivares M., Sanz Y. The Microbiota and the Gut-Brain Axis in Controlling Food Intake and Energy Homeostasis.Int J Mol Sci. 2021;22(11). doi: 10.3390/ijms22115830.

54. Cani P.D. Metabolism in 2013: The gut microbiota manages host metabolism. Nat Rev Endocrinol. 2014;10(2):74-6. doi: 10.1038/nrendo.2013.240.

55. Enright E.F., Gahan C.G., Joyce S.A., Griffin B.T. The Impact of the Gut Microbiota on Drug Metabolism and Clinical Outcome. Yale J Biol Med. 2016;89(3):375-82.

56. Javdan B., Lopez J.G., Chankhamjon P. et al. Personalized Mapping of Drug Metabolism by the Human Gut Microbiome. Cell. 2020;181(7):1661-79 e22. doi: 10.1016/j.cell.2020.05.001.

57. Swanson H.I. Drug Metabolism by the Host and Gut Microbiota: A Partnership or Rivalry? Drug Metab Dispos. 2015;43(10):1499-504. doi: 10.1124/dmd.115.065714.

58. Kolodnitsky A.S., Ionov N.S., Rudik A.V., Filimonov D.A., Poroikov V.V. HGMMX: Host Gut Microbiota Metabolism Xenobiotics Database. J Chem Inf Model. 2023;63(21):6463-8. doi: 10.1021/acs.jcim.3c00837.

59. Kang W.K., Florman J.T., Araya A. et al. Vitamin B(12) produced by gut bacteria modulates cholinergic signalling. Nat Cell Biol. 2024;26(1):72-85. doi: 10.1038/s41556-023-01299-2.

60. Matthews M.K., Wilcox H., Hughes R. et al. Genetic Influences of the Microbiota on the Life Span of Drosophila melanogaster. Appl Environ Microbiol. 2020;86(10). doi: 10.1128/AEM.00305-20.

61. Judd A.M., Matthews M.K., Hughes R., Veloz M., Sexton C.E., Chaston J.M. Bacterial Methionine Metabolism Genes Influence Drosophila melanogaster Starvation Resistance. Appl Environ Microbiol. 2018;84(17). doi: 10.1128/AEM.00662-18.

62. Wu X., Han Z., Liu B. et al. Gut microbiota contributes to the methionine metabolism in host. Front Microbiol. 2022;13:1065668. doi: 10.3389/fmicb.2022.1065668.

63. Hartstra A.V., Schuppel V., Imangaliyev S. et al. Infusion of donor feces affects the gut-brain axis in humans with metabolic syndrome. Mol Metab. 2020;42:101076. doi: 10.1016/j.molmet.2020.101076.

64. Xia D., Yang L., Cui J. et al.Combined Analysis of the Effects of Exposure to Blue Light in Ducks Reveals a Reduction in Cholesterol Accumulation Through Changes in Methionine Metabolism and the Intestinal Microbiota. Front Nutr. 2021;8:737059. doi: 10.3389/fnut.2021.737059.

65. Li H., Ye F., Li Z., Peng X., Wu L., Liu Q. The response of gut microbiota to arsenic metabolism is involved in arsenic-induced liver injury, which is influenced by the interaction between arsenic and methionine synthase. Environ Int. 2024;190:108824. doi: 10.1016/j.envint.2024.108824.

66. Ma M., Geng S., Liu M. et al. Effects of Different Methionine Levels in Low Protein Diets on Production Performance, Reproductive System, Metabolism, and Gut Microbiota in Laying Hens. Front Nutr. 2021;8:739676. doi: 10.3389/fnut.2021.739676.

67. Radziejewska A., Muzsik A., Milagro F.I., Martinez J.A., Chmurzynska A. One-Carbon Metabolism and Nonalcoholic Fatty Liver Disease: The Crosstalk between Nutrients, Microbiota, and Genetics. Lifestyle Genom. 2020;13(2):53-63. doi: 10.1159/000504602.

68. Ning K., Lu K., Chen Q. et al. Epigallocatechin Gallate Protects Mice against Methionine-Choline-Deficient-Diet-Induced Nonalcoholic Steatohepatitis by Improving Gut Microbiota To Attenuate Hepatic Injury and Regulate Metabolism. ACS Omega. 2020;5(33):20800-9. doi: 10.1021/acsomega.0c01689.

69. Ji M., Xu X., Xu Q. et al. Methionine restriction-induced sulfur deficiency impairs antitumour immunity partially through gut microbiota. Nat Metab. 2023;5(9):1526-43. doi: 10.1038/s42255-023-00854-3.

70. Ren B., Wang L., Mulati A., Liu Y., Liu Z., Liu X. Methionine Restriction Improves Gut Barrier Function by Reshaping Diurnal Rhythms of Inflammation-Related Microbes in Aged Mice. Front Nutr. 2021;8:746592. doi: 10.3389/fnut.2021.746592.

71. Tian R., Liu H.H., Feng S.Q. et al. Gut microbiota metabolic characteristics in coronary artery disease patients with hyperhomocysteine. J Microbiol. 2022;60(4):419-28. doi: 10.1007/s12275-022-1451-2.

72. Jie Z., Xia H., Zhong S.L. et al. The gut microbiome in atherosclerotic cardiovascular disease. Nat Commun. 2017;8(1):845. doi: 10.1038/s41467-017-00900-1.

73. Liang W., Yang Y., Gong S. et al. Airway dysbiosis accelerates lung function decline in chronic obstructive pulmonary disease. Cell Host Microbe. 2023;31(6):1054-70 e9. doi: 10.1016/j.chom.2023.04.018.

74. Johansen J., Atarashi K., Arai Y. et al. Centenarians have a diverse gut virome with the potential to modulate metabolism and promote healthy lifespan. Nat Microbiol. 2023;8(6):1064-78. doi: 10.1038/s41564-023-01370-6.

75. Shao A., Zhao Q., Chen M. Homocysteine Promotes Intestinal Inflammation in Colitis Mice Through the PGE2/STAT3 Signaling Pathway. Dig Dis Sci. 2024;69(10):3742-52. doi: 10.1007/s10620-024-08588-2.

76. Burr N.E., Hull M.A., Subramanian V. Folic Acid Supplementation May Reduce Colorectal Cancer Risk in Patients With Inflammatory Bowel Disease: A Systematic Review and Meta-Analysis. J Clin Gastroenterol. 2017;51(3):247-53. doi: 10.1097/MCG.0000000000000498.

77. Wang N., Tang H., Wang X., Wang W., Feng J. Homocysteine upregulates interleukin-17A expression via NSun2-mediated RNA methylation in T lymphocytes. Biochem Biophys Res Commun. 2017;493(1):94-9. doi: 10.1016/j.bbrc.2017.09.069.

78. Feng C., Yan J., Luo T. et al. Vitamin B12 ameliorates gut epithelial injury via modulating the HIF-1 pathway and gut microbiota. Cell Mol Life Sci. 2024;81(1):397. doi: 10.1007/s00018-024-05435-5.

79. Xu J., Liang R., Zhang W. et al. Faecalibacterium prausnitzii-derived microbial anti-inflammatory molecule regulates intestinal integrity in diabetes mellitus mice via modulating tight junction protein expression. J Diabetes. 2020;12(3):224-36. doi: 10.1111/1753-0407.12986.

80. Lurz E., Horne R.G., Maattanen P. et al. Vitamin B12 Deficiency Alters the Gut Microbiota in a Murine Model of Colitis. Front Nutr. 2020;7:83. doi: 10.3389/fnut.2020.00083.

81. Schwenger K.J.P., Sharma D., Ghorbani Y. et al. Links between gut microbiome, metabolome, clinical variables and non-alcoholic fatty liver disease severity in bariatric patients. Liver Int. 2024;44(5):1176-88. doi: 10.1111/liv.15864.

82. Zhai Z., Dong W., Sun Y. et al. Vitamin-Microbiota Crosstalk in Intestinal Inflammation and Carcinogenesis. Nutrients. 2022;14(16). doi: 10.3390/nu14163383.

83. LeBlanc J.G., Levit R., Savoy de Giori G., de Moreno de LeBlanc A. Application of vitamin-producing lactic acid bacteria to treat intestinal inflammatory diseases. Appl Microbiol Biotechnol. 2020;104(8):3331-7. doi: 10.1007/s00253-020-10487-1.

84. Levit R., Savoy de Giori G., de Moreno de LeBlanc A., LeBlanc J.G. Recent update on lactic acid bacteria producing riboflavin and folates: application for food fortification and treatment of intestinal inflammation. J Appl Microbiol. 2021;130(5):1412-24. doi: 10.1111/jam.14854.

85. Levit R., Savoy de Giori G., de Moreno de LeBlanc A., LeBlanc J.G. Beneficial effect of a mixture of vitamin-producing and immune-modulating lactic acid bacteria as adjuvant for therapy in a recurrent mouse colitis model. Appl Microbiol Biotechnol. 2019;103(21-22):8937-45. doi: 10.1007/s00253-019-10133-5.

86. Levit R., Savoy de Giori G., de Moreno de LeBlanc A., LeBlanc J.G. Evaluation of vitamin-producing and immunomodulatory lactic acid bacteria as a potential co-adjuvant for cancer therapy in a mouse model. J Appl Microbiol. 2021;130(6):2063-74. doi: 10.1111/jam.14918.

87. Mansour N.M., Elkalla W.S., Ragab Y.M., Ramadan M.A. Inhibition of acetic acid-induced colitis in rats by new Pediococcus acidilactici strains, vitamin producers recovered from human gut microbiota. PLoS One. 2021;16(7): e0255092. doi: 10.1371/journal.pone.0255092.

88. Wang L., Tang L., Feng Y. et al. A purified membrane protein from Akkermansia muciniphila or the pasteurised bacterium blunts colitis associated tumourigenesis by modulation of CD8(+) T cells in mice. Gut. 2020;69(11):1988-97. doi: 10.1136/gutjnl-2019-320105.

89. Wu Y., Zhu C., Chen Z. et al. Protective effects of Lactobacillus plantarum on epithelial barrier disruption caused by enterotoxigenic Escherichia coli in intestinal porcine epithelial cells. Vet Immunol Immunopathol. 2016;172:55-63. doi: 10.1016/j.vetimm.2016.03.005.

90. de Meer K., Smulders Y.M., Dainty J.R. et al. [6S]5-methyltetrahydrofolate or folic acid supplementation and absorption and initial elimination of folate in young and middle-aged adults. Eur J Clin Nutr. 2005;59(12):1409-16. doi: 10.1038/sj.ejcn.1602254.

91. Sajdel-Sulkowska E.M. The Impact of Maternal Gut Microbiota during Pregnancy on Fetal Gut-Brain Axis Development and Life-Long Health Outcomes. Microorganisms. 2023;11(9). doi: 10.3390/microorganisms11092199.

92. Lu X., Shi Z., Jiang L., Zhang S. Maternal gut microbiota in the health of mothers and offspring: from the perspective of immunology. Front Immunol. 2024;15:1362784. doi: 10.3389/fimmu.2024.1362784.

93. Huang L., Cai M., Li L. et al. Gut microbiota changes in preeclampsia, abnormal placental growth and healthy pregnant women. BMC Microbiol. 2021;21(1):265. doi: 10.1186/s12866-021-02327-7.

94. Li P., Wang H., Guo L. et al. Association between gut microbiota and preeclampsia-eclampsia: a two-sample Mendelian randomization study. BMC Med. 2022;20(1):443. doi: 10.1186/s12916-022-02657-x.

95. Ionescu R.F., Enache R.M., Cretoiu S.M., Gaspar B.S. Gut Microbiome Changes in Gestational Diabetes.Int J Mol Sci. 2022;23(21). doi: 10.3390/ijms232112839.

96. Hasain Z., Mokhtar N.M., Kamaruddin N.A. et al. Gut Microbiota and Gestational Diabetes Mellitus: A Review of Host-Gut Microbiota Interactions and Their Therapeutic Potential. Front Cell Infect Microbiol. 2020;10:188. doi: 10.3389/fcimb.2020.00188.

97. Xiao Y., Li M., Zheng S. et al. Alterations in maternal-fetal gut and amniotic fluid microbiota associated with fetal growth restriction. BMC Pregnancy Childbirth. 2024;24(1):728. doi: 10.1186/s12884-024-06930-0.

98. Yang J., Hou L., Wang J. et al. Unfavourable intrauterine environment contributes to abnormal gut microbiome and metabolome in twins. Gut. 2022;71(12):2451-62. doi: 10.1136/gutjnl-2021-326482.

99. Alsharairi N.A., Li L. Gut Microbiota, Inflammation, and Probiotic Supplementation in Fetal Growth Restriction-A Comprehensive Review of Human and Animal Studies. Life (Basel). 2023;13(12). doi: 10.3390/life13122239.

100. Gorczyca K., Obuchowska A., Kimber-Trojnar Z., Wierzchowska-Opoka M., Leszczynska-Gorzelak B. Changes in the Gut Microbiome and Pathologies in Pregnancy.Int J Environ Res Public Health. 2022;19(16). doi: 10.3390/ijerph19169961.


Рецензия

Для цитирования:


Бочковский С.К., Милютина Ю.П., Арутюнян А.В. Микробиота кишечника: потенциальные подходы к профилактике гипергомоцистеинемии при беременности. Экспериментальная и клиническая гастроэнтерология. 2025;(7):108-116. https://doi.org/10.31146/1682-8658-ecg-239-7-108-116

For citation:


Bochkovsky S.K., Milyutina Yu.P., Arutyunyan A.V. Gut microbiota: potential approaches to the treatment of hyperhomocysteinemia during pregnancy. Experimental and Clinical Gastroenterology. 2025;(7):108-116. (In Russ.) https://doi.org/10.31146/1682-8658-ecg-239-7-108-116

Просмотров: 9

JATS XML


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 1682-8658 (Print)