Нестероидные противовоспалительные препараты и микробиота кишечника: потенциальные механизмы взаимодействия
https://doi.org/10.31146/1682-8658-ecg-239-7-99-107
Аннотация
Об авторах
Е. И. ЕрмоленкоРоссия
Н. В. Барышникова
Россия
А. Н. Суворов
Россия
Список литературы
1. Koppel N., Maini Rekdal V., Balskus E.P. Chemical transformation of xenobiotics by the human gut microbiota. Science. 2017 Jun 23;356(6344): eaag2770. doi: 10.1126/science.aag2770.
2. Wilson I. D., Nicholson J.K. Gut microbiome interactions with drug metabolism, efficacy, and toxicity. Transl Res. 2017 Jan;179:204-222. doi: 10.1016/j.trsl.2016.08.002.
3. Collins S.L., Patterson A.D. The gut microbiome: an orchestrator of xenobiotic metabolism. Acta Pharm Sin B. 2020 Jan;10(1):19-32. doi: 10.1016/j.apsb.2019.12.001.
4. Sousa T., Paterson R., Moore V., Carlsson A., Abrahamsson B., Basit A.W. The gastrointestinal microbiota as a site for the biotransformation of drugs.Int J Pharm. 2008 Nov 3;363(1-2):1-25. doi: 10.1016/j.ijpharm.2008.07.009.
5. Wilkinson E.M., Ilhan Z.E., Herbst-Kralovetz M.M. Microbiota-drug interactions: Impact on metabolism and efficacy of therapeutics. Maturitas. 2018 Jun;112:53-63. doi: 10.1016/j.maturitas.2018.03.012.
6. Li H., He J., Jia W. The influence of gut microbiota on drug metabolism and toxicity. Expert Opin Drug Metab Toxicol. 2016;12(1):31-40. doi: 10.1517/17425255.2016.1121234.
7. Maseda D., Ricciotti E. NSAID-Gut Microbiota Interactions. Front Pharmacol. 2020 Aug 7;11:1153. doi: 10.3389/fphar.2020.01153.
8. Sun C., Chen L., Shen Z. Mechanisms of gastrointestinal microflora on drug metabolism in clinical practice. Saudi Pharm J. 2019 Dec;27(8):1146-1156. doi: 10.1016/j.jsps.2019.09.011.
9. Qin J., Li R., Raes J., Arumugam M., Burgdorf K.S., Manichanh C., et al. A human gut microbial gene catalogue established by metagenomic sequencing. Nature. 2010 Mar 4;464(7285):59-65. doi: 10.1038/nature08821.
10. Spanogiannopoulos P., Bess E.N., Carmody R.N., Turnbaugh P.J. The microbial pharmacists within us: a metagenomic view of xenobiotic metabolism. Nat Rev Microbiol. 2016 Apr;14(5):273-87. doi: 10.1038/nrmicro.2016.17.
11. Clayton T.A., Baker D., Lindon J.C., Everett J.R., Nicholson J.K. Pharmacometabonomic identification of a significant host-microbiome metabolic interaction affecting human drug metabolism. Proc Natl Acad Sci U S A. 2009 Aug 25;106(34):14728-33. doi: 10.1073/pnas.0904489106.
12. Boelsterli U.A., Redinbo M.R., Saitta K.S. Multiple NSAID-induced hits injure the small intestine: underlying mechanisms and novel strategies. Toxicol Sci. 2013 Feb;131(2):654-67. doi: 10.1093/toxsci/kfs310.
13. Dalby A.B., Frank D.N., St Amand A.L., Bendele A.M., Pace N.R. Culture-independent analysis of indomethacin-induced alterations in the rat gastrointestinal microbiota. Appl Environ Microbiol. 2006 Oct;72(10):6707-15. doi: 10.1128/AEM.00378-06.
14. Terán-Ventura E., Aguilera M., Vergara P., Martínez V. Specific changes of gut commensal microbiota and TLRs during indomethacin-induced acute intestinal inflammation in rats. J Crohns Colitis. 2014 Sep;8(9):1043-54. doi: 10.1016/j.crohns.2014.02.001.
15. Liang X., Bittinger K., Li X., Abernethy D.R., Bushman F.D., FitzGerald G.A. Bidirectional interactions between indomethacin and the murine intestinal microbiota. Elife. 2015 Dec 23;4: e08973. doi: 10.7554/eLife.08973.
16. Xiao X., Nakatsu G., Jin Y., Wong S., Yu J., Lau J.Y.W. Microbiota Mediates Protection Against Enteropathy Induced by Indomethacin. Sci Rep. 2017 Jan 9;7:40317. doi: 10.1038/srep40317.
17. Syer S.D., Blackler R.W., Martin R. et al. NSAID enteropathy and bacteria: a complicated relationship. J Gastroenterol. 2015 Apr;50(4):387-93. doi: 10.1007/s00535-014-1032-1.
18. Colucci R., Pellegrini C., Fornai M. et al. Pathophysiology of NSAID-Associated Intestinal Lesions in the Rat: Luminal Bacteria and Mucosal Inflammation as Targets for Prevention. Front Pharmacol. 2018 Nov 29;9:1340. doi: 10.3389/fphar.2018.01340.
19. Montrose D.C., Zhou X.K., McNally E.M. et al. Celecoxib Alters the Intestinal Microbiota and Metabolome in Association with Reducing Polyp Burden. Cancer Prev Res (Phila). 2016 Sep;9(9):721-31. doi: 10.1158/1940-6207.CAPR-16-0095.
20. Bokulich N.A., Battaglia T., Aleman J.O., Walker J.M., Blaser M.J., Holt P.H. Celecoxib does not alter intestinal microbiome in a longitudinal diet-controlled study. Clin Microbiol Infect. 2016 May;22(5):464-5. doi: 10.1016/j.cmi.2016.01.013.
21. Edogawa S., Peters S.A., Jenkins G.D. et al. Sex differences in NSAID-induced perturbation of human intestinal barrier function and microbiota. FASEB J. 2018 Jun 13;32(12): fj201800560R. doi: 10.1096/fj.201800560R.
22. Annadurai S., Guha-Thakurta A., Sa B., Dastidar S.G., Ray R., Chakrabarty A.N. Experimental studies on synergism between aminoglycosides and the antimicrobial antiinflammatory agent diclofenac sodium. J Chemother. 2002 Feb;14(1):47-53. doi: 10.1179/joc.2002.14.1.47.
23. Shirin H., Moss S.F., Kancherla S., Kancherla K., Holt P.R., Weinstein I.B. et al. Non-steroidal anti-inflammatory drugs have bacteriostatic and bactericidal activity against Helicobacter pylori. J Gastroenterol Hepatol. 2006 Sep;21(9):1388-93. doi: 10.1111/j.1440-1746.2006.04194.x.
24. Chan E.W.L., Yee Z.Y., Raja I., Yap J.K.Y. Synergistic effect of non-steroidal anti-inflammatory drugs (NSAIDs) on antibacterial activity of cefuroxime and chloramphenicol against methicillin-resistant Staphylococcus aureus. J Glob Antimicrob Resist. 2017 Sep;10:70-74. doi: 10.1016/j.jgar.2017.03.012.
25. Dastidar S.G., Ganguly K., Chaudhuri K., Chakrabarty A.N. The anti-bacterial action of diclofenac shown by inhibition of DNA synthesis.Int J Antimicrob Agents. 2000 Apr;14(3):249-51. doi: 10.1016/s0924-8579(99)00159-4.
26. Thangamani S., Younis W., Seleem M.N. Repurposing celecoxib as a topical antimicrobial agent. Front Microbiol. 2015 Jul 28;6:750. doi: 10.3389/fmicb.2015.00750.
27. Rogers M.A.M., Aronoff D.M. The influence of non-steroidal anti-inflammatory drugs on the gut microbiome. Clin Microbiol Infect. 2016 Feb;22(2):178.e1-178.e9. doi: 10.1016/j.cmi.2015.10.003.
28. Mäkivuokko H., Tiihonen K., Tynkkynen S., Paulin L., Rautonen N. The effect of age and non-steroidal anti-inflammatory drugs on human intestinal microbiota composition. Br J Nutr. 2010 Jan;103(2):227-34. doi: 10.1017/S0007114509991553.
29. Yoshikawa K., Kurihara C., Furuhashi H. et al. Psychological stress exacerbates NSAID-induced small bowel injury by inducing changes in intestinal microbiota and permeability via glucocorticoid receptor signaling. J Gastroenterol. 2017 Jan;52(1):61-71. doi: 10.1007/s00535-016-1205-1.
30. Collins S.M., Bercik P. The relationship between intestinal microbiota and the central nervous system in normal gastrointestinal function and disease. Gastroenterology. 2009 May;136(6):2003-14. doi: 10.1053/j.gastro.2009.01.075.
31. Wang X., Tang Q., Hou H. et al. Gut Microbiota in NSAID Enteropathy: New Insights From Inside. Front Cell Infect Microbiol. 2021 Jul 6;11:679396. doi: 10.3389/fcimb.2021.679396.
32. Rekatsina M., Paladini A., Cifone M.G., Lombardi F., Pergolizzi J.V., Varrassi G. Influence of Microbiota on NSAID Enteropathy: A Systematic Review of Current Knowledge and the Role of Probiotics. Adv Ther. 2020 May;37(5):1933-1945. doi: 10.1007/s12325-020-01338-6.
33. Li T., Ding N., Guo H. et al. A gut microbiota-bile acid axis promotes intestinal homeostasis upon aspirin-mediated damage. Cell Host Microbe. 2024 Feb 14;32(2):191-208.e9. doi: 10.1016/j.chom.2023.12.015.
34. Zhao R., Coker O.O., Wu J. et al. Aspirin Reduces Colorectal Tumor Development in Mice and Gut Microbes Reduce its Bioavailability and Chemopreventive Effects. Gastroenterology. 2020 Sep;159(3):969-983.e4. doi: 10.1053/j.gastro.2020.05.004.
35. Brennan C.A., Nakatsu G., Gallini Comeau C.A. et al. Aspirin Modulation of the Colorectal Cancer-Associated Microbe Fusobacterium nucleatum. mBio. 2021 Apr 6;12(2): e00547-21. doi: 10.1128/mBio.00547-21.
36. Tiihonen K., Tynkkynen S., Ouwehand A., Ahlroos T., Rautonen N. The effect of ageing with and without non-steroidal anti-inflammatory drugs on gastrointestinal microbiology and immunology. Br J Nutr. 2008 Jul;100(1):130-7. doi: 10.1017/S000711450888871X.
37. Lanas A., Scarpignato C. Microbial flora in NSAID-induced intestinal damage: a role for antibiotics? Digestion. 2006;73 Suppl 1:136-50. doi: 10.1159/000089789.
38. Otani K., Tanigawa T., Watanabe T. et al. Microbiota Plays a Key Role in Non-Steroidal Anti-Inflammatory Drug-Induced Small Intestinal Damage. Digestion. 2017;95(1):22-28. doi: 10.1159/000452356.
39. Watanabe T., Higuchi K., Kobata A. et al. Non-steroidal anti-inflammatory drug-induced small intestinal damage is Toll-like receptor 4 dependent. Gut. 2008 Feb;57(2):181-7. doi: 10.1136/gut.2007.125963.
40. Davies G.R., Wilkie M.E., Rampton D.S. Effects of metronidazole and misoprostol on indomethacin-induced changes in intestinal permeability. Dig Dis Sci. 1993 Mar;38(3):417-25. doi: 10.1007/BF01316493.
41. Scarpignato C., Dolak W., Lanas A. et al. Rifaximin Reduces the Number and Severity of Intestinal Lesions Associated With Use of Nonsteroidal Anti-Inflammatory Drugs in Humans. Gastroenterology. 2017 Apr;152(5):980-982.e3. doi: 10.1053/j.gastro.2016.12.007.
42. Mani S., Boelsterli U.A., Redinbo M.R. Understanding and modulating mammalian-microbial communication for improved human health. Annu Rev Pharmacol Toxicol. 2014;54:559-80. doi: 10.1146/annurev-pharmtox-011613-140007.
43. Gallo A., Passaro G., Gasbarrini A., Landolfi R., Montalto M. Modulation of microbiota as treatment for intestinal inflammatory disorders: An uptodate. World J Gastroenterol. 2016 Aug 28;22(32):7186-202. doi: 10.3748/wjg.v22.i32.7186.
44. Watanabe T., Nishio H., Tanigawa T. et al. Probiotic Lactobacillus casei strain Shirota prevents indomethacin-induced small intestinal injury: involvement of lactic acid. Am J Physiol Gastrointest Liver Physiol. 2009 Sep;297(3): G506-13. doi: 10.1152/ajpgi.90553.2008.
45. Kinouchi T., Kataoka K., Bing S.R., Nakayama H. Culture supernatants of Lactobacillus acidophilus and Bifidobacterium adolescentis repress ileal ulcer formation in rats treated with a nonsteroidal antiinflammatory drug by suppressing unbalanced growth of aerobic bacteria and lipid peroxidation. Microbiol Immunol. 1998;42(5):347-55. doi: 10.1111/j.1348-0421.1998.tb02294.x.
46. Fornai M., Pellegrini C., Benvenuti L. et al. Protective effects of the combination Bifidobacterium longum plus lactoferrin against NSAID-induced enteropathy. Nutrition. 2020 Feb;70:110583. doi: 10.1016/j.nut.2019.110583.
47. Endo H., Higurashi T., Hosono K. et al. Efficacy of Lactobacillus casei treatment on small bowel injury in chronic low-dose aspirin users: a pilot randomized controlled study. J Gastroenterol. 2011 Jul;46(7):894-905. doi: 10.1007/s00535-011-0410-1.
48. Suzuki T., Masui A., Nakamura J. et al. Yogurt Containing Lactobacillus gasseri Mitigates Aspirin-Induced Small Bowel Injuries: A Prospective, Randomized, Double-Blind, Placebo-Controlled Trial. Digestion. 2017;95(1):49-54. doi: 10.1159/000452361.
49. Montalto M., Gallo A., Curigliano V. et al. Clinical trial: the effects of a probiotic mixture on non-steroidal anti-inflammatory drug enteropathy - a randomized, double-blind, cross-over, placebo-controlled study. Aliment Pharmacol Ther. 2010 Jul;32(2):209-14. doi: 10.1111/j.1365-2036.2010.04324.x.
50. Mortensen B., Murphy C., O’Grady J. et al. Bifidobacteriumbreve Bif195 Protects Against Small-Intestinal Damage Caused by Acetylsalicylic Acid in Healthy Volunteers. Gastroenterology. 2019 Sep;157(3):637-646.e4. doi: 10.1053/j.gastro.2019.05.008.
51. Gotteland M., Cruchet S., Verbeke S. Effect of Lactobacillus ingestion on the gastrointestinal mucosal barrier alterations induced by indometacin in humans. Aliment Pharmacol Ther. 2001 Jan;15(1):11-7. doi: 10.1046/j.1365-2036.2001.00898.x.
52. Mujagic Z., de Vos P., Boekschoten M.V. et al. The effects of Lactobacillus plantarum on small intestinal barrier function and mucosal gene transcription; a randomized double-blind placebo controlled trial. Sci Rep. 2017 Jan 3;7:40128. doi: 10.1038/srep40128.
53. Mizoguchi H., Ogawa Y., Kanatsu K., Tanaka A., Kato S., Takeuchi K. Protective effect of rebamipide on indomethacin-induced intestinal damage in rats. J Gastroenterol Hepatol. 2001 Oct;16(10):1112-9. doi: 10.1046/j.1440-1746.2001.02592.x.
54. Diao L., Mei Q., Xu J.M., Liu X.C., Hu J., Jin J., et al. Rebamipide suppresses diclofenac-induced intestinal permeability via mitochondrial protection in mice. World J Gastroenterol. 2012 Mar 14;18(10):1059-66. doi: 10.3748/wjg.v18.i10.1059.
55. Tanigawa T., Watanabe T., Otani K. et al. Rebamipide inhibits indomethacin-induced small intestinal injury: possible involvement of intestinal microbiota modulation by upregulation of α-defensin 5. Eur J Pharmacol. 2013 Mar 15;704(1-3):64-9. doi: 10.1016/j.ejphar.2013.02.010.
56. Kurata S., Nakashima T., Osaki T. et al. Rebamipide protects small intestinal mucosal injuries caused by indomethacin by modulating intestinal microbiota and the gene expression in intestinal mucosa in a rat model. J Clin Biochem Nutr. 2015 Jan;56(1):20-7. doi: 10.3164/jcbn.14-67.
57. Niwa Y., Nakamura M., Ohmiya N. et al. Efficacy of rebamipide for diclofenac-induced small-intestinal mucosal injuries in healthy subjects: a prospective, randomized, double-blinded, placebo-controlled, cross-over study. J Gastroenterol. 2008;43(4):270-6. doi: 10.1007/s00535-007-2155-4.
58. Fujimori S., Takahashi Y., Gudis K. et al. Rebamipide has the potential to reduce the intensity of NSAID-induced small intestinal injury: a double-blind, randomized, controlled trial evaluated by capsule endoscopy. J Gastroenterol. 2011 Jan;46(1):57-64. doi: 10.1007/s00535-010-0332-3.
59. Mizukami K., Murakami K., Abe T. et al. Aspirin-induced small bowel injuries and the preventive effect of rebamipide. World J Gastroenterol. 2011 Dec 14;17(46):5117-22. doi: 10.3748/wjg.v17.i46.5117.
60. Kurokawa S., Katsuki S., Fujita T. et al. A randomized, double-blinded, placebo-controlled, multicenter trial, healing effect of rebamipide in patients with low-dose aspirin and/or non-steroidal anti-inflammatory drug induced small bowel injury. J Gastroenterol. 2014 Feb;49(2):239-44. doi: 10.1007/s00535-013-0805-2.
61. Watanabe T., Takeuchi T., Handa O. et al. A multicenter, randomized, double-blind, placebo-controlled trial of high-dose rebamipide treatment for low-dose aspirin-induced moderate-to-severe small intestinal damage. PLoS One. 2015 Apr 15;10(4): e0122330. doi: 10.1371/journal.pone.0122330.
62. Ota K., Takeuchi T., Nouda S. et al. Determination of the adequate dosage of rebamipide, a gastric mucoprotective drug, to prevent low-dose aspirin-induced gastrointestinal mucosal injury. J Clin Biochem Nutr. 2016 Nov;59(3):231-237. doi: 10.3164/jcbn.16-49.
Рецензия
Для цитирования:
Ермоленко Е.И., Барышникова Н.В., Суворов А.Н. Нестероидные противовоспалительные препараты и микробиота кишечника: потенциальные механизмы взаимодействия. Экспериментальная и клиническая гастроэнтерология. 2025;(7):99-107. https://doi.org/10.31146/1682-8658-ecg-239-7-99-107
For citation:
Ermolenko E.I., Baryshnikova N.V., Suvorov A.N. Gut microbiota and non-steroidal anti-inflammatory drugs: mechanisms of interaction. Experimental and Clinical Gastroenterology. 2025;(7):99-107. (In Russ.) https://doi.org/10.31146/1682-8658-ecg-239-7-99-107
JATS XML





































