Гиперурикемия и активность инфламмасомы NLRP3 в концепции метаболического синдрома и сердечно-сосудистых заболеваний
https://doi.org/10.31146/1682-8658-ecg-235-3-207-216
Аннотация
Об авторах
П. А. ЛебедевРоссия
С. В. Булгакова
Россия
О. А. Гусякова
Россия
Е. В. Паранина
Россия
Список литературы
1. Shal’nova S. A., Deyev A.D., Artamonova G.V. i soavt. Giperurikemiya i yeye korrelyaty v Rossiyskoy populyatsii (rezul’taty epidemiologicheskogo issledovaniya ESSE RF). [Hyperuricemia and its correlates in the Russian population (results of an epidemiological study by ESSE RF)] Ratsional’naya farmakoterapiya v kardiologii. 2014; 10 (2): 153-159. doi: 10.20996/1819-6446-2014-10-2-153-159.@@ Шальнова С.А., Деев А.Д., Артамонова Г.В. и соавт. Гиперурикемия и ее корреляты в Российской популяции (результаты эпидемиологического исследования ЭССЕ РФ). Рациональная фармакотерапия в кардиологии. 2014; 10 (2): 153-159.
2. Zuo T., Liu X., Jiang L. et al. Hyperuricemia and coronary heart disease mortality: a meta-analysis of prospective cohort studies. BMC Cardiovasc Disord 16, 207 (2016). doi: 1186/s12872-016-0379-z.
3. Saito Y., Tanaka A., Node K., Kobayashi Y. Uric acid and cardiovascular disease: A clinical review. J Cardiol. 2021 Jul;78(1):51-57. doi: 10.1016/j.jjcc.2020.12.013.
4. Li X., Meng X., Timofeeva M. et al. Serum uric acid levels and multiple health outcomes: umbrella review of evidence from observational studies, randomised controlled trials, and Mendelian randomisation studies. BMJ. 2017 Jun 7;357: j2376. doi: 10.1136/bmj.j2376.
5. Efstathiadou A., Gill D., McGrane F. et al. Genetically Determined Uric Acid and the Risk of Cardiovascular and Neurovascular Diseases: A Mendelian Randomization Study of Outcomes Investigated in Randomized Trials. J Am Heart Assoc. 2019 Sep 3;8(17): e012738. doi: 10.1161/JAHA.119.012738.
6. Wang K., Shi X., Zhu Z. et al. Mendelian randomization analysis of 37 clinical factors and coronary artery disease in East Asian and European populations. Genome Med. 2022;14:63. doi: 10.1186/s13073-022-01067-1
7. Glantzounis G.K., Tsimoyiannis E.C., Kappas A.M., Galaris D.A. Uric acid and oxidative stress. Curr Pharm Des. (2005) 11:4145-51. doi: 10.2174/138161205774913255.
8. Lai J.H., Luo S.F., Hung L.F. et al. Physiological concentrations of soluble uric acid are chondroprotective and anti-inflammatory. Sci Rep 7, 2359 (2017). doi: 10.1038/s41598-017-02640-0
9. Moon K.W. Mortality rate of gout patients has been increased in Korea Annals of the Rheumatic Diseases 82(Suppl 1):523.2-524. doi: 10.1136/annrheumdis-2023- eular.4032.
10. Hansildaar R., Vedder D., Baniaamam M. et al. Cardiovascular risk in inflammatory arthritis: rheumatoid arthritis and gout. Lancet Rheumatol. 2021 Jan;3(1): e58-e70. doi: 10.1016/S2665-9913(20)30221-6.
11. Kang H.S., Lee N.E., Yoo D.M. et al. An elevated likelihood of stroke, ischemic heart disease, or heart failure in individuals with gout: a longitudinal follow-up study utilizing the National Health Information database in Korea. Front Endocrinol (Lausanne). 2023;23;14:1195888. doi: 10.3389/fendo.2023.1195888.
12. Kuo C.F, Grainge M.J., Zhang W., Doherty M. Global epidemiology of gout: prevalence, incidence and risk factors. Nat Rev Rheumatol. 2015 Nov;11(11):649-62. doi: 10.1038/nrrheum.2015.91.
13. Hansildaar R., Vedder D., Baniaamam M. et al. Cardiovascular risk in inflammatory arthritis: rheumatoid arthritis and gout. Lancet Rheumatol. 2021 Jan;3(1): e58-e70. doi: 10.1016/S2665-9913(20)30221-6.
14. Klauser A.S., Halpern E.J., Strobl S. et al. Dual-energy computed tomography detection of cardiovascular monosodium urate deposits in patients with gout. JAMA Cardiol. 2019;4:1019-1028. doi: 10.1001/jamacardio.2019.3201.
15. Barazani S.H., Chi W.W., Pyzik R. et al. Quantification of uric acid in vasculature of patients with gout using dual-energy computed tomography. World J Radiol. 2020;12:184-194. doi: 10.4329/wjr.v12.i8.184.
16. Strandberg T.E., Kovanen P.T. Coronary artery disease: ‘gout’ in the artery? European Heart Journal. 2021;42:2761-2764. VIEWPOINT. doi: 10.1093/eurheartj/ehab276.
17. Lee J.S., Kwon O.C., Oh J.S. et al. Clinical features and recurrent attack in gout patients according to serum urate levels during an acute attack. Korean J Intern Med. 2020 Jan;35(1):240-248. doi: 10.3904/kjim.2018.205.
18. Chen J., Wu M., Yang J. et al. The Immunological Basis in the Pathogenesis of Gout. Iran J Immunol. 2017 Jun;14(2):90-98.
19. Peng T.C., Wang C.C., Kao T.W. et al. Relationship between hyperuricemia and lipid profiles in US adults. Biomed Res Int. 2015;2015:127596. doi: 10.1155/2015/127596.
20. Baldwin W., McRae S., Marek G. et al. Hyperuricemia as a mediator of the proinflammatory endocrine imbalance in the adipose tissue in a murine model of the metabolic syndrome. Diabetes. 2011;60(4):1258-1269. doi: 10.2337/db10-0916.
21. Fang Y.J., Wu T.Y., Lin C.L. et al. Effects of Urate-Lowering Therapy on Risk of Hyperlipidemia in Gout by a Population-Based Cohort Study and on In Vitro Hepatic Lipogenesis-Related Gene Expression. Mediators Inflamm. 2020 Nov 14;2020:8890300. doi: 10.1155/2020/8890300.
22. Wu K.K., Cheung S.W., Cheng K.K. NLRP3 Inflammasome Activation in Adipose Tissues and Its Implications on Metabolic Diseases.Int J Mol Sci. 2020 Jun 11;21(11):4184. doi: 10.3390/ijms21114184.
23. Bando S., Fukuda D., Soeki T. et al. Expression of NLRP3 in subcutaneous adipose tissue is associated with coronary atherosclerosis. Atherosclerosis. 2015 Oct;242(2):407-14. doi: 10.1016/j.atherosclerosis.2015.07.043.
24. Koenen T.B., Stienstra R., van Tits L.J. et al. Hyperglycemia activates caspase-1 and TXNIP-mediated IL-1beta transcription in human adipose tissue. Diabetes. 2011 Feb;60(2):517-24. doi: 10.2337/db10-0266.
25. Vandanmagsar B., Youm Y.H., Ravussin A. et al. The NLRP3 inflammasome instigates obesity-induced inflammation and insulin resistance. Nat Med. 2011 Feb;17(2):179-88. doi: 10.1038/nm.2279.
26. Mylona E.E., Mouktaroudi M., Crisan T.O. et al. Enhanced interleukin-1β production of PBMCs from patients with gout after stimulation with Toll-like receptor-2 ligands and urate crystals. Arthritis Res Ther. 2012 Jul 4;14(4): R158. doi: 10.1186/ar3898.
27. Tong Y., Wang Z., Cai L. et al. NLRP3 Inflammasome and Its Central Role in the Cardiovascular Diseases. Oxid Med Cell Longev. 14;2020:4293206. doi: 10.1155/2020/4293206.
28. Clavijo-Cornejo D., López-Reyes A., Cruz-Arenas E. et al. Inflammasome genes polymorphisms and susceptibility to gout. Is there a link? Rev Invest Clin. 2022 May 2;74(3):147-155. doi: 10.24875/RIC.21000603.
29. Zhang Q.B., Qing Y.F., He Y.L. al. Association of NLRP3 polymorphisms with susceptibility to primary gouty arthritis in a Chinese Han population. Clin Rheumatol. 2018 Jan;37(1):235-244. doi: 10.1007/s10067-017-3900-6.
30. Liu Y.R., Wang J.Q., Li J. Role of NLRP3 in the pathogenesis and treatment of gout arthritis. Front Immunol. 2023 Mar 27;14:1137822. doi: 10.3389/fimmu.2023.1137822.
31. Schlesinger N., Pillinger M.H., Simon L.S. et al.Interleukin-1β inhibitors for the management of acute gout flares: a systematic literature review. Arthritis Res Ther. 2023 Jul 25;25(1):128. doi: 10.1186/s13075-023-03098-4.
32. Panevin T.S., Eliseev M.S., Nasonov E.L. Urate-lowering drugs in the treatment of gout: The unknown about the known. Rheumatology Science and Practice. 2021;59(6):727-737. (In Russ.) doi: 10.47360/1995-4484-2021-727-737.@@ Паневин Т.С., Елисеев М.С., Насонов Е.Л. Уратснижающие препараты в лечении подагры: неизвестное об известном. Научно-практическая ревматология. 2021;59(6):727-737. doi: 10.47360/1995-4484-2021-727-737.
33. Garanin A.A., Novichkova N.L., Novichkova N.L. Prospects of anti-inflammatory and urate-lowering therapy of gout: A vector from the past to the future. Rheumatology Science and Practice. 2022;60(2):205-213. (In Russ.) doi: 10.47360/1995-4484-2022-205-213.@@ Гаранин А.А., Новичкова Н.Л., Лебедев П.А. Перспективы противовоспалительной и уратснижающей терапии подагры: вектор от прошлого к будущему. Научно-практическая ревматология. 2022;60(2):205-213.
34. McWherter C., Choi Y.J., Serrano R.L. et al. Arhalofenate acid inhibits monosodium urate crystal-induced inflammatory responses through activation of AMPactivated protein kinase (AMPK) signaling. Arthritis Res Ther. 2018;20(1):204. doi: 10.1186/s13075-018-1699-4.
35. Klück V., Jansen T.L.T.A., Janssen M. et al. Dapansutrile, an oral selective NLRP3 inflammasome inhibitor, for treatment of gout flares: an open-label, dose-adaptive, proof-of-concept, phase 2a trial. Lancet Rheumatol. 2020;2(5): e270-e280. doi: 10.1016/s2665-9913(20)30065-.
36. Schunk S.J., Kleber M.E., März W. eQTLGen consortium; BIOS consortium. Genetically determined NLRP3 inflammasome activation associates with systemic inflammation and cardiovascular mortality. Eur Heart J. 2021 May 7;42(18):1742-1756. doi: 10.1093/eurheartj/ehab107.
37. Olsen M.B., Gregersen I., Sandanger Ø. et al. Targeting the Inflammasome in Cardiovascular Disease. JACC Basic Transl Sci. 2021 Nov 3;7(1):84-98. doi: 10.1016/j.jacbts.2021.08.006.
38. Zhang H., Ma Y., Cao R. et al. Soluble uric acid induces myocardial damage through activating the NLRP3 inflammasome. J Cell Mol Med. 2020 Aug;24(15):8849-8861. doi: 10.1111/jcmm.15523.
39. Solomon D.H., Liu C-C., Kuo I-H. et al. Effects of colchicine on risk of cardiovascular events and mortality among patients with gout: a cohort study using electronic medical records linked with Medicare claims. Ann Rheum Dis. 2016;75:1674-1679. doi: 10.1136/annrheumdis-2015-207984.
40. Adler Y., Charron P., Imazio M. et al. ESC Guidelines for the diagnosis and management of pericardial diseases: the Task Force for the Diagnosis and Management of Pericardial Diseases of the European Society of Cardiology (ESC) Endorsed by: The European Association for Cardio-Thoracic Surgery (EACTS) Eur Heart J. 2015;36:2921-2964. doi: 10.1093/eurheartj/ehv318.
41. Nidorf S.M., Eikelboom J.W., Budgeon C.A., Thompson P.L. Low-dose colchicine for secondary prevention of cardiovascular disease. J Am Coll Cardiol. 2013;61:404-410. doi: 10.1016/j.jacc.2012.10.027.
42. Nidorf S.M., Fiolet A.T.L., Mosterd A. et al. LoDoCo2 Trial Investigators. Colchicine in Patients with Chronic Coronary Disease. N Engl J Med. 2020 Nov 5;383(19):1838-1847. doi: 10.1056/NEJMoa2021372.
43. Bouabdallaoui N., Tardif J.C., Waters D.D. et al. Time-to-treatment initiation of colchicine and cardiovascular outcomes after myocardial infarction in the Colchicine Cardiovascular Outcomes Trial (COLCOT). Eur Heart J. 2020 Nov 7;41(42):4092-4099. doi: 10.1093/eurheartj/ehaa659.
44. Shvartz V., Le T., Enginoev S., Sokolskaya M. et al. Colchicine in Cardiac Surgery: The COCS Randomized Clinical Trial. J Cardiovasc Dev Dis. 2022 Oct 20;9(10):363. doi: 10.3390/jcdd9100363.
45. Solomon D.H., Glynn R.J., MacFadyen JG. et al. Relationship of Interleukin-1β Blockade With Incident Gout and Serum Uric Acid Levels: Exploratory Analysis of a Randomized Controlled Trial. Annals of Internal Medicine. 2018;169(8):535-42. doi: 10.7326/M18-1167.
Рецензия
Для цитирования:
Лебедев П.А., Булгакова С.В., Гусякова О.А., Паранина Е.В. Гиперурикемия и активность инфламмасомы NLRP3 в концепции метаболического синдрома и сердечно-сосудистых заболеваний. Экспериментальная и клиническая гастроэнтерология. 2025;(3):207-216. https://doi.org/10.31146/1682-8658-ecg-235-3-207-216
For citation:
Lebedev P.A., Bulgakova S.V., Gusyakova O.A., Paranina E.V. Hyperuricemia and NLRP3 inflammasome activity in the concept of metabolic syndrome and cardiovascular diseases. Experimental and Clinical Gastroenterology. 2025;(3):207-216. (In Russ.) https://doi.org/10.31146/1682-8658-ecg-235-3-207-216
 
                    
 
                                                 


































 
             
  Послать статью по эл. почте
            Послать статью по эл. почте