Preview

Experimental and Clinical Gastroenterology

Advanced search

Chronic atrophic gastritis: molecular pathogenesis and therapeutic targets

https://doi.org/10.31146/1682-8658-ecg-234-2-4-14

Abstract

Chronic atrophic gastritis (CAG) is one of the most common gastrointestinal diseases characterized by decreased thickness of the gastric mucosa, reduced number of gastric glands and moderate inflammation. The etiology of CAG is related to the adverse effects of two major factors, Helicobacter infection and autoimmune aggression. The leading initial role in the damage to the gastric mucosa, leading to long-term consequences in the form of atrophy, belongs to H. pylori. As atrophic gastritis progresses, other bacterial species (Fusobacterium nucleatum, Streptococcus anginosus) appear in the gastric lumen and may cause additional damage and/or provoke carcinogenesis. Damage to the gastric epithelium is accompanied by two response patterns, superficial and glandular. In the context of CAG pathogenesis, the glandular response is of great importance, characterized by slow development and changes in the structure of the fundal glands. The most sensitive to damage are the lining cells, the death of which can be carried out by apoptosis, autophagy, pyroptosis and ferroptosis. The death of cladding cells triggers paligenosis - the process of stepwise transformation of the main cells into metaplastic SPEM-cells, which at the final stage due to the activation of mTOR pathway acquire the ability to divide, and repeated cycles of their de/redifferentiation contribute to the accumulation of oncogenic mutations. With continued exposure to unfavorable factors, gastric mucosal atrophy progresses to the next stage of the Correa cascade - pyloric metaplasia, then to intestinal metaplasia and dysplasia. Modern research methods, including sequencing of individual cells, molecular imaging, and the use of organoids allow us to identify the main molecular targets responsible for regenerative processes in the gastric mucosa. Stimulation of these mechanisms in the nearest future may become the basis for pathogenetic treatment of CAG, aimed not only at elimination of the main etiologic factors and cessation of inflammation, but also at regeneration of gastric glands and restoration of secretory function.

About the Authors

M. M. Galagudza
Almazov National Medical Research Centre of the Ministry of Health of the Russian Federation; Pavlov First St. Petersburg State Medical University; Institute for Analytical Instrumentation of the Russian Academy of Sciences
Russian Federation


Yu. P. Uspensky
Pavlov First St. Petersburg State Medical University; St. Petersburg State Pediatric Medical University
Russian Federation


Yu. A. Fominykh
Almazov National Medical Research Centre of the Ministry of Health of the Russian Federation; Pavlov First St. Petersburg State Medical University; St. Petersburg State Pediatric Medical University
Russian Federation


N. V. Baryshnikova
Pavlov First St. Petersburg State Medical University; St. Petersburg State Pediatric Medical University; Institute of Experimental Medicine
Russian Federation


K. V. Zaichenko
Institute for Analytical Instrumentation of the Russian Academy of Sciences
Russian Federation


S. V. Petlenko
Scientific and Clinical Center of Toxicology named after Academician S.N. Golikova
Russian Federation


References

1. Drapkina O.M., Kashin S.V., Kuvaev R.O. et al. Modern algorithm of diagnostics and management of patients with chronic atrophic gastritis and intestinal metaplasia of the stomach.Russian Journal of Preventive Medicine. 2023;26(1):7-10. (In Russ.) doi: 10.17116/profmed2023260117.@@ Драпкина О.М., Кашин С.В., Куваев Р.О. и др. Современный алгоритм диагностики и ведения пациентов с хроническим атрофическим гастритом и кишечной метаплазией желудка. Профилактическая медицина. 2023;26(1):7-10. doi: 10.17116/profmed2023260117.

2. Yin Y., Liang H., Wei N., Zheng Z. Prevalence of chronic atrophic gastritis worldwide from 2010 to 2020: an updated systematic review and meta-analysis. Annals of Palliative Medicine. 2022;11(12):3697-3703. doi: 10.21037/apm-21-1464.

3. Vannella L., Lahner E., Osborn J. et al. Risk factors for progression to gastric neoplastic lesions in patients with atrophic gastritis. Alimentary Pharmacology & Therapeutics. 2010;31(9):1042-1050. doi: 10.1111/j.1365-2036.2010.04268.x.

4. Kuang W., Xu J., Xu F. et al. Current study of pathogenetic mechanisms and therapeutics of chronic atrophic gastritis: a comprehensive review. Frontiers in Cell and Developmental Biology. 2024;12: 1513426. doi: 10.3389/fcell.2024.1513426.

5. Duan Y., Xu Y., Dou Y., Xu D. Helicobacter pylori and gastric cancer: mechanisms and new perspectives. Journal of Hematology & Oncology. 2025;18: 10. doi: 10.1186/s13045-024-01654-2.

6. Sharndama H.C., Mba I.E. Helicobacter pylori: an up-to-date overview on the virulence and pathogenesis mechanisms. Brazilian Journal of Microbiology. 2022;53(1):33-50. doi: 10.1007/s42770-021-00675-0.

7. Baj J., Forma A., Sitarz M. et al. Helicobacter pylori Virulence Factors-Mechanisms of Bacterial Pathogenicity in the Gastric Microenvironment. Cells. 2020;10(1): 27. doi: 10.3390/cells10010027.

8. Nishioka M., Takeuchi H., Con S.A. et al. The mechanical binding strengths of Helicobacter pylori BabA and SabA adhesins using an adhesion binding assay-ELISA, and its clinical relevance in Japan. Microbiology and Immunology. 2010;54(8):442-451. doi: 10.1111/j.1348-0421.2010.00237.x.

9. Montecucco C., Rappuoli R. Living dangerously: how Helicobacter pylori survives in the human stomach. Nature Reviews Molecular Cell Biology. 2001;2(6):457-466. doi: 10.1038/35073084.

10. Wang H., Zhao M., Shi F. et al. A review of signal pathway induced by virulent protein CagA of Helicobacter pylori. Frontiers in Cellular and Infection Microbiology. 2023;13: 1062803. doi: 10.3389/fcimb.2023.1062803.

11. Tang L., Tang B., Lei Y. et al. Helicobacter pylori-Induced Heparanase Promotes H. pylori Colonization and Gastritis. Frontiers in Immunology. 2021;12: 675747. doi: 10.3389/fimmu.2021.675747.

12. Wei Y.F., Xie S.A., Zhang S.T. Current research on the interaction between Helicobacter pylori and macrophages. Molecular Biology Reports. 2024;51(1): 497. doi: 10.1007/s11033-024-09395-8.

13. El-Zimaity H.M. Gastric atrophy, diagnosing and staging. World Journal of Gastroenterology. 2006;12(36):5757-5762. doi: 10.3748/wjg.v12.i36.5757.

14. Jiang Y., Meng F., Liu Y. et al. Does Helicobacter pylori infection affect the structure of bacteria in the gastric mucosa and fluid in patients with chronic antral gastritis? The Journal of General and Applied Microbiology. 2021;67(5):179-185. doi: 10.2323/jgam.2020.08.005.

15. Kato M., Asaka M. Recent knowledge of the relationship between Helicobacter pylori and gastric cancer and recent progress of gastroendoscopic diagnosis and treatment for gastric cancer. Japanese Journal of Clinical Oncology. 2010;40(9):828-837. doi: 10.1093/jjco/hyq119.

16. Sáenz J.B., Mills J.C. Acid and the basis for cellular plasticity and reprogramming in gastric repair and cancer. Nature Reviews Gastroenterology & Hepatology. 2018;15(5):257-273. doi: 10.1038/nrgastro.2018.5.

17. Kiryukhin A.P., Tertychnyy A.S., Pavlov P.V. et al. Autoimmune Gastritis: Focus on Endoscopic and Morphological Characteristics.Russian Journal of Gastroenterology, Hepatology, Coloproctology. 2024;34(1):58-69. (In Russ.) doi: 10.22416/1382-4376-2024-34-1-58-69.@@ Кирюхин А.П., Тертычный А.С., Павлов П.В. и др. Аутоиммунный гастрит: в фокусе эндоскопические и морфологические характеристики. Российский журнал гастроэнтерологии, гепатологии, колопроктологии. 2024;34(1):58-69. doi: 10.22416/1382-4376-2024-34-1-58-69.

18. Lenti M.V., Rugge M., Lahner E. et al. Autoimmune gastritis. Nature Reviews Disease Primers. 2020;6(1): 56. doi: 10.1038/s41572-020-0187-8.

19. Lenti M.V., Facciotti F., Miceli E. et al. Mucosal Overexpression of Thymic Stromal Lymphopoietin and Proinflammatory Cytokines in Patients with Autoimmune Atrophic Gastritis. Clinical and Translational Gastroenterology. 2022;13(7): e00510. doi: 10.14309/ctg.0000000000000510.

20. Massironi S., Gallo C., Elvevi A. et al. Incidence and prevalence of gastric neuroendocrine tumors in patients with chronic atrophic autoimmune gastritis. World Journal of Gastrointestinal Oncology. 2023;15(8):1451-1460. doi: 10.4251/wjgo.v15.i8.1451.

21. Oldani A., Cormont M., Hofman V. et al. Helicobacter pylori counteracts the apoptotic action of its VacA toxin by injecting the CagA protein into gastric epithelial cells. PLOS Pathogens. 2009;5(10): e1000603. doi: 10.1371/journal.ppat.1000603.

22. Gonciarz W., Krupa A., Hinc K. et al. The effect of Helicobacter pylori infection and different H. pylori components on the proliferation and apoptosis of gastric epithelial cells and fibroblasts. PLoS One. 2019;14(8): e0220636. doi: 10.1371/journal.pone.0220636.

23. Chang W., Bai J., Tian S. et al. Autophagy protects gastric mucosal epithelial cells from ethanol-induced oxidative damage via mTOR signaling pathway. Experimental Biology and Medicine. 2017;242(10):1025-1033. doi: 10.1177/1535370216686221.

24. Zhang X., Li C., Chen D. et al. H. pylori CagA activates the NLRP3 inflammasome to promote gastric cancer cell migration and invasion. Inflammation Research. 2022;71(1):141-155. doi: 10.1007/s00011-021-01522-6.

25. Liu D., Peng J., Xie J., Xie Y.Comprehensive analysis of the function of helicobacter-associated ferroptosis gene YWHAE in gastric cancer through multi-omics integration, molecular docking, and machine learning. Apoptosis. 2024;29(3-4):439-456. doi: 10.1007/s10495-023-01916-3.

26. Goldenring J.R. Pyloric metaplasia, pseudopyloric metaplasia, ulcer-associated cell lineage and spasmolytic polypeptide-expressing metaplasia: reparative lineages in the gastrointestinal mucosa. The Journal of Pathology. 2018;245(2):132-137. doi: 10.1002/path.5066.

27. Goldenring J.R., Mills J.C. Cellular Plasticity, Reprogramming, and Regeneration: Metaplasia in the Stomach and Beyond. Gastroenterology. 2022;162(2):415-430. doi: 10.1053/j.gastro.2021.10.036.

28. Petersen C.P., Meyer A.R., De Salvo C. et al. A signalling cascade of IL-33 to IL-13 regulates metaplasia in the mouse stomach. Gut. 2018;67(5):805-817. doi: 10.1136/gutjnl-2016-312779.

29. Wang Y.K., Zhou J.L., Meng N.L. et al. How Does Helicobacter pylori Infection Cause Gastric Mucosal Atrophy. Infection and Drug Resistance. 2022;15:3619-3629. doi: 10.2147/IDR.S355981.

30. Burclaff J., Osaki L.H., Liu D. et al. Targeted Apoptosis of Parietal Cells Is Insufficient to Induce Metaplasia in Stomach. Gastroenterology. 2017;152(4):762-766.e7. doi: 10.1053/j.gastro.2016.12.001.

31. Messal H.A., Cremona C.A., Lan L., Behrens A. Paligenosis: prepare to regenerate! The EMBO Journal. 2018;37(7): e99206. doi: 10.15252/embj.201899206.

32. Meyer A.R., Goldenring J.R. Injury, repair, inflammation and metaplasia in the stomach. The Journal of Physiology. 2018;596(17):3861-3867. doi: 10.1113/JP275512.

33. Correa P., Piazuelo M.B. The gastric precancerous cascade. Journal of Digestive Diseases. 2012;13(1):2-9. doi: 10.1111/j.1751-2980.2011.00550.x.

34. Balkwill F., Mantovani A. Inflammation and cancer: back to Virchow? Lancet. 2001;357(9255):539-545. doi: 10.1016/S0140-6736(00)04046-0.

35. He J., Hu W., Ouyang Q. et al. Helicobacter pylori infection induces stem cell-like properties in Correa cascade of gastric cancer. Cancer Letters. 2022;542: 215764. doi: 10.1016/j.canlet.2022.215764.

36. Zuo W., Yang H., Li N. et al. Helicobacter pylori infection activates Wnt/β-catenin pathway to promote the occurrence of gastritis by upregulating ASCL1 and AQP5. Cell Death Discovery. 2022;8(1): 257. doi: 10.1038/s41420-022-01026-0.

37. Xu Y., Song S., Wang Z., Ajani J.A. The role of hedgehog signaling in gastric cancer: molecular mechanisms, clinical potential, and perspective. Cell Communication and Signaling. 2019;17(1): 157. doi: 10.1186/s12964-019-0479-3.

38. Camilo V., Barros R., Sousa S. et al. Helicobacter pylori and the BMP pathway regulate CDX2 and SOX2 expression in gastric cells. Carcinogenesis. 2012;33(10):1985-1992. doi: 10.1093/carcin/bgs233.

39. Mendes-Rocha M., Pereira-Marques J., Ferreira R.M., Figueiredo C. Gastric Cancer: The Microbiome Beyond Helicobacter pylori. In: Backert, S. (eds) Helicobacter pylori and Gastric Cancer. Current Topics in Microbiology and Immunology. Springer, Cham. 2023;444:157-184. doi: 10.1007/978-3-031-47331-9_6.

40. Guo F., Li L., Li L. Streptococcus anginosus: A new pathogen of superficial gastritis, atrophic gastritis and gastric cancer. Biomolecules and Biomedicine. 2024;24(5):1040-1043. doi: 10.17305/bb.2024.10705.

41. Jove A., Lin C., Hwang J.H. et al. Serum Gastrin Levels Are Associated with Prevalent Neuroendocrine Tumors in Autoimmune Metaplastic Atrophic Gastritis. The American Journal of Gastroenterology. 2024. doi: 10.14309/ajg.0000000000003235.

42. Tong Q.Y., Pang M.J., Hu X.H. et al. Gastric intestinal metaplasia: progress and remaining challenges. Journal of Gastroenterology. 2024;59(4):285-301. doi: 10.1007/s00535-023-02073-9.

43. Wang F., Scoville D., He X.C. et al. Isolation and characterization of intestinal stem cells based on surface marker combinations and colony-formation assay. Gastroenterology. 2013;145(2):383-395.e1-21. doi: 10.1053/j.gastro.2013.04.050.

44. Yanger K., Knigin D., Zong Y. et al. Adult hepatocytes are generated by self-duplication rather than stem cell differentiation. Cell Stem Cell. 2014;15(3):340-349. doi: 10.1016/j.stem.2014.06.003.

45. Tao X., Chen Q., Li N. et al. Serotonin-RhoA/ROCK axis promotes acinar-to-ductal metaplasia in caerulein-induced chronic pancreatitis. Biomedicine & Pharmacotherapy. 2020;125: 109999. doi: 10.1016/j.biopha.2020.109999.

46. Brown J.W., Cho C.J., Mills J.C. Paligenosis: Cellular Remodeling During Tissue Repair. Annual Review of Physiology. 2022;84:461-483. doi: 10.1146/annurev-physiol-061121-035954.

47. Adkins-Threats M., Mills J.C. Cell plasticity in regeneration in the stomach and beyond. Current Opinion in Genetics & Development. 2022;75: 101948. doi: 10.1016/j.gde.2022.101948.

48. Hoffmann W. Self-renewal of the gastric epithelium from stem and progenitor cells. Frontiers in Bioscience-Scholar. 2013;5(2):720-731. doi: 10.2741/s402.

49. Han S., Fink J., Jörg D.J. et al. Defining the Identity and Dynamics of Adult Gastric Isthmus Stem Cells. Cell Stem Cell. 2019;25(3):342-356.e7. doi: 10.1016/j.stem.2019.07.008.

50. Yang H., Zhou X., Hu B. The ‘reversibility’ of chronic atrophic gastritis after the eradication of Helicobacter pylori. Postgraduate Medicine. 2022;134(5):474-479. doi: 10.1080/00325481.2022.2063604.

51. Liang Y., Yang Y., Nong R. et al. Do atrophic gastritis and intestinal metaplasia reverse after Helicobacter pylori eradication? Helicobacter. 2024;29(1): e13042. doi: 10.1111/hel.13042.

52. Baryshnikova N.V., Uspenskiy Y.P., Fominykh Y.A. et al. Endoscopic and morphometric analysis of the reduction of acute inflammatory process in the gastric mucosa after therapy with Regasthym Gastro. Terapevticheskii Arkhiv. 2023;95(4):322-326. (In Russ.) doi: 10.26442/00403660.2023.04.202147.@@ Барышникова Н.В., Успенский Ю.П., Фоминых Ю.А. и др. Эндоскопический и морфометрический анализ редукции острого воспалительного процесса в слизистой оболочке желудка на фоне терапии препаратом Регастим Гастро. Терапевтический архив. 2023;95(4):322-326. doi: 10.26442/00403660.2023.04.202147.

53. San Gabriel A.M., Maekawa T., Uneyama H. et al. mGluR1 in the fundic glands of rat stomach. FEBS Letters. 2007;581(6):1119-1123. doi: 10.1016/j.febslet.2007.02.016.

54. Ledonne A., Mercuri N.B. Insights on the Functional Interaction between Group 1 Metabotropic Glutamate Receptors (mGluRI) and ErbB Receptors.International Journal of Molecular Sciences. 2020;21(21): 7913. doi: 10.3390/ijms21217913.

55. Baryshnikova N.V., Uspensky Yu.P., Fominykh Yu.A. et al. Repair stimulator alpha-glutamyl-tryptophan in the complex therapy of chronic atrophic gastritis: results of histological examination.Russian Journal of Archive of Pathology. 2023;85(3):54-63. (In Russ.) doi: 10.17116/patol20238503154.@@ Барышникова Н.В., Успенский Ю.П., Фоминых Ю.А. и др. Стимулятор репарации альфа-глутамил-триптофан в комплексной терапии хронического атрофического гастрита: результаты гистологического исследования. Архив патологии. 2023;85(3):54-63. doi: 10.17116/patol20238503154.

56. Uspenskiy Yu.P., Baryshnikova N.V., Fominykh Yu.A., Shekhtman A.V. Efficacy of alpha-glutamyl-tryptophan in the treatment of chronic atrophic gastritis: case series.Russian Journal of Evidence-Based Gastroenterology. 2024;13(4):121-128. (In Russ.) doi: 10.17116/dokgastro202413041121.@@ Успенский Ю.П., Барышникова Н.В., Фоминых Ю.А., Шехтман А.В. Эффективность альфа-глутамил-триптофана в лечении хронического атрофического гастрита на клинических примерах. Доказательная гастроэнтерология. 2024;13(4):121-128. doi: 10.17116/dokgastro202413041121.


Review

For citations:


Galagudza M.M., Uspensky Yu.P., Fominykh Yu.A., Baryshnikova N.V., Zaichenko K.V., Petlenko S.V. Chronic atrophic gastritis: molecular pathogenesis and therapeutic targets. Experimental and Clinical Gastroenterology. 2025;(2):4-14. (In Russ.) https://doi.org/10.31146/1682-8658-ecg-234-2-4-14

Views: 22


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1682-8658 (Print)