Preview

Experimental and Clinical Gastroenterology

Advanced search

Transcription level of genes of the glutathione-S-transferase system in the liver of rats under long-term exposure to acrylamide with prophylactic administration of hydroxymethyluracil complex compounds

https://doi.org/10.31146/1682-8658-ecg-230-10-143-149

Abstract

The purpose of the study was to assess the level of transcriptional activity of the Gstt1 and Gstm1 genes in the liver of rats under long-term exposure to acrylamide against the background of preventive correction with hydroxymethyluracil complex compounds. Materials and methods. The experiment was carried out on outbred male rats with oral administration of acrylamide at a dose of 5 mg/kg and complex compounds of hydroxymethyluracil with ascorbic acid, sodium succinate and acetylcysteine in a prophylactic regimen for three months. The study of gene transcription in liver tissue samples was carried out using real-time polymerase chain reaction using oligonucleotide specific primers and the intercalating dye SYBR Green. The Gapdh gene was used as a reference gene. For statistical analysis of the results, the IBM SPSS Statistics 21 application package was used. Results. In our study, the expression of the Gstm1 and Gstt1 genes decreased after 1.5 months of exposure to acrylamide in animal liver tissue samples. The introduction of prophylactic drugs contributed to an increase in its level: to a greater extent, a complex compound of WMU with sodium succinate, which was statistically significant, and to a lesser extent, complex compounds of WMU with ascorbic acid and acetylcysteine. After 3 months, differences between groups were less noticeable for these genes. Conclusion. With long-term exposure to acrylamide, the most significant changes in gene expression in rat liver tissue were observed at 1.5 months, compared with data at the end of the experiment. At the same period of the study, complex compounds of oxymethyluracil have a certain corrective effect on the transcriptional activity of both the Gstt1 gene and the Gstm1 gene. To make a final judgment about the protective properties of the complex compounds being studied, further research is needed to analyze changes in other indicators of the health status of laboratory animals.

About the Authors

N. Yu. Khusnutdinova
Ufa Research Institute of Occupational Health and Human Ecolog
Russian Federation


T. G. Yakupova
Ufa Research Institute of Occupational Health and Human Ecolog
Russian Federation


E. F. Repina
Ufa Research Institute of Occupational Health and Human Ecolog
Russian Federation


D. O. Karimov
Ufa Research Institute of Occupational Health and Human Ecolog
Russian Federation


E. R. Kudoyarov
Ufa Research Institute of Occupational Health and Human Ecolog
Russian Federation


A. A. Gizatullina
Ufa Research Institute of Occupational Health and Human Ecolog
Russian Federation


G. F. Muhammadieva
Ufa Research Institute of Occupational Health and Human Ecolog
Russian Federation


References

1. Moorman W.J., Reutman S.S., Shaw P.B. et al. Occupational exposure to acrylamide in closed system production plants: Air levels and biomonitoring. Journal of Toxicology and Environmental Health, Part A. 2012;75(2):100-111. doi: 10.1080/15287394.2011.615109.

2. Gökmen V., Palazoglu T.K. Acrylamide formation in foods during thermal processing with a focus on frying. Food and bioprocess technology. 2008;1:35-42. doi: 10.1007/s11947-007-0005-2.

3. Smith C.J., Perfetti T.A., Rumple M.A. et al. “IARC group 2A Carcinogens” reported in cigarette mainstream smoke. Food and chemical toxicology. 2000;38(4):371-383. doi: 10.1016/S0278-6915(99)00156-8.

4. Mousavi Khaneghah A., Fakhri Y., Nematollahi A. et al. The concentration of acrylamide in different food products: a global systematic review, meta-analysis, and meta-regression. Food Reviews International. 2022;38(6):1286-1304. doi: 10.1080/87559129.2020.1791175.

5. Mesias M., Delgado-Andrade C., Holgado F., Morales F.J. Acrylamide content in French fries prepared in food service establishments. Lwt. 2019;100:83-91. doi: 10.1016/j.lwt.2018.10.050.

6. Duedahl-Olesen L., Wilde A.S., Dagnæs-Hansen M.P. et al. Acrylamide in commercial table olives and the effect of domestic cooking. Food Control. 2022; 132:108515. doi: 10.1016/j.foodcont.2021.108515.

7. Kocadağlı T., Gökmen V. Formation of acrylamide in coffee. Current Opinion in Food Science. 2022;45:100842. doi: 10.1016/j.cofs.2022.100842.

8. Lee S., Park H.R., Lee J.Y. et al. Learning, memory deficits, and impaired neuronal maturation attributed to acrylamide. Journal of Toxicology and Environmental Health, Part A. 2018;81(9):254-265. doi: 10.1080/15287394.2018.1440184.

9. Triningsih D., Yang J.H., Sim K.H. et al. Acrylamide and its metabolite induce neurotoxicity via modulation of protein kinase C and AMP-activated protein kinase pathways. Toxicology in Vitro. 2021;72:105105. doi: 10.1016/j.tiv.2021.105105.

10. Ghorbel I., Elwej A., Fendri N. et al. Olive oil abrogates acrylamide induced nephrotoxicity by modulating biochemical and histological changes in rats. Renal Failure. 2017;39(1):236-245. doi: 10.1080/0886022X.2016.1256320.

11. Friedman M. Chemistry, biochemistry, and safety of acrylamide. A review. Journal of agricultural and food chemistry. 2003;51(16):4504-4526. doi: 10.1021/jf030204.

12. Tomaszewska E., Muszyoski S., Świetlicka I. et al. Prenatal acrylamide exposure results in time-dependent changes in liver function and basal hematological, and oxidative parameters in weaned Wistar rats. Scientific Reports. 2022; 12(1):14882. doi: 10.1038/s41598-022-19178-5.

13. Graff R.E., Cho E., Preston M.A. et al. Dietary acrylamide intake and risk of renal cell carcinoma in two large prospective co-horts. Cancer Epidemiology Biomarkers & Prevention. 2018;27(8):979-982. doi: 10.1158/1055-9965.EPI-18-0320.

14. Jiang L., Cao J., An Y. et al. Genotoxicity of acrylamide in human hepatoma G2 (HepG2) cells. Toxicology in Vitro. 2007;21(8):1486-1492. doi: 10.1016/j.tiv.2007.06.011.

15. Zhang X., Cao J., Jiang L. et al. Protective effect of hydroxytyrosol against acrylamide-induced cytotoxicity and DNA damage in HepG2 cells. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis. 2009;664(1-2):64-68. doi: 10.1016/j.mrfmmm.2009.02.013.

16. Alturfan A.A., Tozan-Beceren A., Sehirli A.Ö. et al. Resveratrol ameliorates oxidative DNA damage and protects against acrylamide-induced oxidative stress in rats. Molecular biology reports. 2012;39:4589-4596. doi: 10.1007/s11033-011-1249-5.

17. Yilmaz B.O., Yildizbayrak N., Aydin Y., Erkan M. Evidence of acrylamide- and glycidamide-induced oxidative stress and apoptosis in Leydig and Sertoli cells. Human & experimental toxicology. 2017;36(12):1225-1235. doi: 10.1177/0960327116686818.

18. World Health Organization.International agency for research on cancer. IARC Monographs on the Evaluation of Carcinogenic Risks to Man. Lyon, 1994;60:1-560.

19. Johnson K.A., Gorzinski S.J., Bodner K.M. et al. Chronic toxicity and oncogenicity study on acrylamide incorporated in the drinking water of Fischer 344 rats. Toxicology and applied pharmacology. 1986;85(2):154-168. doi: 10.1016/0041-008X(86)90109-2.

20. Hamdy S., Bakeer H., Eskander E., Sayed O. Effect of acrylamide on some hormones and endocrine tissues in male rats. Human & Experimental Toxicology. 2012;31(5):483-491. doi: 10.1177/0960327111417267.

21. Sayed S., Alotaibi S.S., El-Shehawi A.M. et al. The Anti-Inflammatory, anti-apoptotic and antioxidant effects of a pomegranate-peel extract against acrylamide-induced hepatotoxicity in rats. Life. 2022;12(2):224. doi: 10.3390/life12020224.

22. Zha L., Sobue T., Kitamura T. et al. JPHC Study Group. Dietary acrylamide intake and the risk of liver cancer: The Japan public health center-based prospective study. Nutrients. 2020;12:2503. doi: 10.3390/nu12092503.

23. Michalak J., Czarnowska-Kujawska M., Klepacka J., Gujska E. Effect of microwave heating on the acrylamide formation in foods. Molecules. 2020;25:4140. doi: 10.3390/molecules25184140.

24. Panel E.C. Scientific Opinion on Acrylamide in Food. EFSA Journal. 2015;13(6):4104.

25. Pelucchi C., Bosetti C., Galeone C., La Vecchia C. Dietary acrylamide and cancer risk: an updated meta-analysis.International Journal of Cancer. 2015; 136(12):2912-2922. doi: 10.1002/ijc.29339.

26. Gu X., Manautou J.E. Molecular mechanisms underlying chemical liver injury. Expert reviews in molecular medicine. 2012;14: e4. doi: 10.1017/S1462399411002110.

27. Belhadj Benziane A., Dilmi Bouras A., Mezaini A. et al. Effect of oral exposure to acrylamide on biochemical and hematologic parameters in Wistar rats. Drug and chemical toxicology. 2019;42(2):157-166. doi: 10.1080/01480545.2018.1450882.

28. Ferrell J.M., Chiang J.Y. Circadian rhythms in liver metabolism and disease. Acta Pharmaceutica Sinica B. 2015;5(2):113-122. doi: 10.1016/j.apsb.2015.01.003.

29. Mushkin V.A., Bakirov A.B., Repina E.F. et al. Study the effectiveness of oxymethyluracil as a means hepatoprotective. Occupational health and human ecology. 2015;2:55-60. (In Russ.)@@ Мышкин В.А., Бакиров А.Б., Репина Э.Ф. и соавт. Изучение эффективности оксиметилурацила в качестве гепатозащитного средства. Медицина труда и экология человека. 2015;2:55-60.

30. European convention for the protection of vertebrate animals used for experimental and other scientific purpose. Council of Europe 18.03.1986. Strasbourg; 1986.

31. Myshkin V.A., Repina E.F., Bakirov A.B. et al. [Complex compound of 5-hydroxy-6-methyluracil with sodium succinate and method for its preparation]. Patent RF № 2475482; 2013. (in Russ.)@@ Мышкин В.А., Репина Э.Ф., Бакиров А.Б. и соавт. Комплексное соединение 5-гидрокси-6-метилурацила с сукцинатом натрия и способ его получения. Патент РФ № 2475482; 2013.

32. Myshkin V.A., Gimadiyeva A.R., Repina E.F. et al. [A complex compound of 5-hydroxy-6-methyluracil with ascorbic acid exhibiting antihypoxic activity, and a method for its preparation]. Patent RF № 2612517; 2017. (in Russ.)@@ Мышкин В.А., Гимадиева А.Р., Репина Э.Ф., и соавт. Комплексное соединение 5-гидрокси-6-метилурацила с аскорбиновой кислотой, проявляющее антигипоксическую активность, и способ его получения. Патент РФ № 2612517; 2017.

33. Repina E.F., Gimadiyeva A.R., Karimov D.O. et al. [A complex compound of 5-hydroxy-6-methyluracil with N-acetylcysteine exhibiting antihypoxic activity, and a method for its preparation]. Patent RF № 2751632; 2021.@@ Репина Э.Ф., Гимадиева А.Р., Каримов Д.О. и соавт. Комплексное соединение 5-гидрокси-6-метилурацила с N-ацетилцистеином, проявляющее антигипоксическую активность, и способ его получения. Патент РФ № 2751632; 2021.

34. Vaughn M.P., Biswal Shinohara D., Castagna N. et al. Humanizing π-class glutathione S-transferase regulation in a mouse model alters liver toxicity in response to acetaminophen overdose. PloS one. 2011;6(10): e25707. doi: 10.1371/journal.pone.0025707.

35. He L., Gao L., Shi Z. et al. Involvement of cytochrome P450 1A1 and glutathione S-transferase P1 polymorphisms and promoter hypermethylation in the progression of anti-tuberculosis drug-induced liver injury: a case-control study. PloS one. 2015;10(3): e0119481. doi: 10.1371/journal.pone.0119481.

36. Jeong T.B., Kwon D., Son S.W. et al. Weaning mice and adult mice exhibit differential carbon tetrachloride-induced acute hepatotoxicity. Antioxidants. 2020;9(3):201. doi: 10.3390/antiox9030201.

37. Allocati N., Masulli M., Di Ilio C., Federici L. Glutathione transferases: substrates, inihibitors and pro-drugs in cancer and neurodegenerative diseases. Oncogenesis. 2018;7(1):8. doi: 10.1038/s41389-017-0025-3.

38. Zhao S., Zhong H., Geng C. et al.Comprehensive Analysis of Metabolic Changes in Rats Exposed to Acrylamide. Environmental Pollution. 2021;287:117591. doi: 10.1016/j.envpol.2021.117591.

39. Marković Filipović J., Miler M., Kojić D. et al. Effect of acrylamide treatment on Cyp2e1 expression and redox status in rat hepatocytes.International Journal of Molecular Sciences. 2022;23(11):6062. doi: 10.3390/ijms23116062.

40. Karimi M.Y., Fatemi I., Kalantari H. et al. Ellagic acid prevents oxidative stress, inflammation, and histopathological alterations in acrylamide-induced hepatotoxicity in wistar rats. Journal of Dietary Supplements. 2019;17(6):651-662. doi: 10.1080/19390211.2019.1634175.

41. Zhang X., Li Y., Wei X. et al. Metabolomics analysis of the effects of quercetin on hepatotoxicity induced by acrylamide exposure in rats. Free Radical Research. 2021;55(7):732-742. doi: 10.1080/10715762.2021.1950705.

42. Zhang L., Zhang H., Miao Y. et al. Protective effect of allicin against acrylamide-induced hepatocyte damage in vitro and in vivo. Food and chemical toxicology. 2012;50(9): 306-3312. doi: 10.1016/j.fct.2012.05.060.


Review

For citations:


Khusnutdinova N.Yu., Yakupova T.G., Repina E.F., Karimov D.O., Kudoyarov E.R., Gizatullina A.A., Muhammadieva G.F. Transcription level of genes of the glutathione-S-transferase system in the liver of rats under long-term exposure to acrylamide with prophylactic administration of hydroxymethyluracil complex compounds. Experimental and Clinical Gastroenterology. 2024;(10):143-149. (In Russ.) https://doi.org/10.31146/1682-8658-ecg-230-10-143-149

Views: 24


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1682-8658 (Print)