Preview

Experimental and Clinical Gastroenterology

Advanced search

Non-alcoholic fatty liver disease and chronic kidney disease

https://doi.org/10.31146/1682-8658-ecg-230-10-49-61

Abstract

This article presents a block of clinical recommendations for the management of patients with non-alcoholic fatty liver disease (NAFLD), a section on the features of management of patients with NAFLD and concomitant chronic kidney disease (CKD). The article presents the pathogenetic connections of the formation of CKD in patients with NAFLD. There is no doubt about the close relationship between NAFLD, CKD and the development of cardiovascular diseases (CVD) within the hepato-cardio-renal continuum. The results of a large number of multicenter studies and meta-analyses demonstrating the relationship between these diseases are presented. The main directions of diagnosis and treatment of these conditions are considered.

About the Authors

S. V. Turkina
Volgograd State Medical University
Russian Federation


I. A. Tyshchenko
Volgograd State Medical University
Russian Federation


M. N. Titarenko
Volgograd State Medical University
Russian Federation


References

1. Lazarus J.V., Mark H.E., Anstee Q.M. et al. NAFLD Consensus Consortium. Advancing the global public health agenda for NAFLD: a consensus statement. Nat Rev Gastroenterol Hepatol. 2022;19(1):60-78. doi: 10.1038/s41575-021-00523-4.

2. Teng M.L., Ng C.H., Huang D.Q. et al. Global incidence and prevalence of nonalcoholic fatty liver disease. Clin Mol Hepatol. 2023;29(Suppl): S32-S42. doi: 10.3350/cmh.2022.0365.

3. Younossi Z.M., Golabi P., Paik J.M. et al. The global epidemiology of nonalcoholic fatty liver disease (NAFLD) and nonalcoholic steatohepatitis (NASH): a systematic review. Hepatology. 2023;77(4):1335-1347. doi: 10.1097/HEP.0000000000000004.

4. Lazebnik L.B., Turkina S.V. NAFLD Associated Comorbidity. Experimental and Clinical Gastroenterology. 2021;(10):5-13. (In Russ.) doi: 10.31146/1682-8658-ecg-194-10-5-13.@@ Лазебник Л.Б., Туркина С.В. НАЖБП-ассоциированная коморбидность. Экспериментальная и клиническая гастроэнтерология. 2021;(10):5-13. doi: 10.31146/1682-8658-ecg-194-10-5-13.

5. Kovalic A.J., Cholankeril G., Satapathy S.K. Nonalcoholic fatty liver disease and alcoholic liver disease: metabolic diseases with systemic manifestations. Transl Gastroenterol Hepatol. 2019;4:65. doi: 10.21037/tgh.2019.08.09.

6. Targher G., Tilg H., Byrne C.D. Non-alcoholic fatty liver disease: a multisystem disease requiring a multidisciplinary and holistic approach. Lancet Gastroenterol Hepatol. 2021;6(7):578-588. doi: 10.1016/S2468-1253(21)00020-0.

7. Yasui K., Sumida Y., Mori Y. et al. Nonalcoholic steatohepatitis and increased risk of chronic kidney disease. Metabolism. 2011;60(5):735-9. doi: 10.1016/j.metabol.2010.07.022.

8. Paik J., Golabi P., Younoszai Z. et al. Chronic kidney disease is independently associated with increased mortality in patients with nonalcoholic fatty liver disease. Liver Int. 2019;39:342-352. doi: 10.1111/liv.13992.

9. Musso G., Gambino R., Tabibian J.H. et al. Association of non-alcoholic fatty liver disease with chronic kidney disease: a systematic review and meta-analysis. PLoS Med. 2014 Jul 22;11(7): e1001680. doi: 10.1371/journal.pmed.1001680.

10. Mantovani A., Zaza G., Byrne C.D. et al. Nonalcoholic fatty liver disease increases risk of incident chronic kidney disease: A systematic review and meta-analysis. Metabolism. 2018;79:64-76. doi: 10.1016/j.metabol.2017.11.003.

11. Park H., Dawwas G.K., Liu X., Nguyen M.H. Nonalcoholic fatty liver disease increases risk of incident advanced chronic kidney disease: a propensity-matched cohort study. J Intern Med. 2019;286(6):711-722. doi: 10.1111/joim.1296.

12. Byrne C.D., Targher G. NAFLD as a driver of chronic kidney disease. J Hepatol. 2020;72(4):785-801. doi: 10.1016/j.jhep.2020.01.013.

13. Heda R., Yazawa M., Shi M. et al. Non-alcoholic fatty liver and chronic kidney disease: Retrospect, introspect, and prospect. World J Gastroenterol. 2021;27(17):1864-1882. doi: 10.3748/wjg.v27.i17.1864.

14. Roderburg C., Krieg S., Krieg A. et al. Non-alcoholic fatty liver disease (NAFLD) is associated with an increased incidence of chronic kidney disease (CKD). Eur J Med Res. 2023;28(1):153. doi: 10.1186/s40001-023-01114-6.

15. Lonardo A. Association of NAFLD/NASH, and MAFLD/MASLD with chronic kidney disease: an updated narrative review. Metab Target Organ Damage. 2024;4:16. doi: 10.20517/mtod.2024.07.

16. [Chronic kidney disease (CKD)]. Clinical guidelines Ministry of Health of the Russian Federation 2024. ID: 469. (in Russ.)@@ Хроническая болезнь почек (ХБП). Клинические рекомендации Министерства здравоохранения РФ. ID: 469, 2024.

17. Targher G., Bertolini L., Rodella S. et al. Non-alcoholic fatty liver disease is independently associated with an increased prevalence of chronic kidney disease and proliferative/laser-treated retinopathy in type 2 diabetic patients. Diabetologia. 2008;51(3):444-50. doi: 10.1007/s00125-007-0897-4.

18. Targher G., Chonchol M., Bertolini L. et al. Increased risk of CKD among type 2 diabetics with nonalcoholic fatty liver disease. J Am Soc Nephrol. 2008 Aug;19(8):1564-70. doi: 10.1681/ASN.2007101155.

19. Chang Y., Ryu S., Sung E. et al. Nonalcoholic fatty liver disease predicts chronic kidney disease in nonhypertensive and nondiabetic Korean men. Metabolism. 2008 Apr;57(4):569-76. doi: 10.1016/j.metabol.2007.11.022.

20. Mantovani A., Petracca G., Beatrice G. et al. Non-alcoholic fatty liver disease and risk of incident chronic kidney disease: an updated meta-analysis. Gut. 2022;71(1):156-162. doi: 10.1136/gutjnl-2020-323082.

21. Mantovani A., Csermely A., Petracca G. et al. Non-alcoholic fatty liver disease and risk of fatal and non-fatal cardiovascular events: an updated systematic review and meta-analysis. Lancet Gastroenterol Hepatol. 2021 Nov;6(11):903-913. doi: 10.1016/S2468-1253(21)00308-3.

22. Taylor R.S., Taylor R.J., Bayliss S. et al. Association Between Fibrosis Stage and Outcomes of Patients With Nonalcoholic Fatty Liver Disease: A Systematic Review and Meta-Analysis. Gastroenterology. 2020 May;158(6):1611-1625.e12. doi: 10.1053/j.gastro.2020.01.043.

23. Mantovani A., Petracca G., Beatrice G. et al. Non-alcoholic fatty liver disease and risk of incident diabetes mellitus: an updated meta-analysis of 501 022 adult individuals. Gut. 2021 May;70(5):962-969. doi: 10.1136/gutjnl-2020-322572.

24. Cai X., Sun L., Liu X. et al. Non-alcoholic fatty liver disease is associated with increased risk of chronic kidney disease. Ther Adv Chronic Dis. 2021;12:20406223211024361. doi: 10.1177/20406223211024361.

25. Wang T.Y., Wang R.F., Bu Z.Y. et al. Association of metabolic dysfunction-associated fatty liver disease with kidney disease. Nat Rev Nephrol. 2022;18(4):259-268. doi: 10.1038/s41581-021-00519-y.

26. Liang Y., Chen H., Liu Y. et al. Association of MAFLD With Diabetes, Chronic Kidney Disease, and Cardiovascular Disease: A 4.6-Year Cohort Study in China. J Clin Endocrinol Metab. 2022;107(1):88-97. doi: 10.1210/clinem/dgab641.

27. Deng Y., Zhao Q., Gong R. Association Between Metabolic Associated Fatty Liver Disease and Chronic Kidney Disease: A Cross-Sectional Study from NHANES 2017-2018. Diabetes Metab Syndr Obes. 2021;14:1751-1761. doi: 10.2147/DMSO.S292926.

28. Hashimoto Y., Hamaguchi M., Okamura T. et al. Metabolic associated fatty liver disease is a risk factor for chronic kidney disease. J Diabetes Investig. 2022;13(2):308-316. doi: 10.1111/jdi.13678.

29. Mantovani A., Lombardi R., Cattazzo F. et al. MAFLD and CKD: An Updated Narrative Review.Int J Mol Sci. 2022;23(13):7007. doi: 10.3390/ijms23137007.

30. Tanaka M., Mori K., Takahashi S. et al. Metabolic dysfunction-associated fatty liver disease predicts new onset of chronic kidney disease better than fatty liver or nonalcoholic fatty liver disease. Nephrol Dial Transplant. 2023;38(3):700-711. doi: 10.1093/ndt/gfac188.

31. Sun D.Q., Jin Y., Wang T.Y. et al. MAFLD and risk of CKD. Metabolism. 2021;115:154433. doi: 10.1016/j.metabol.2020.154433.

32. Su W., Chen M., Xiao L. et al. Association of metabolic dysfunction-associated fatty liver disease, type 2 diabetes mellitus, and metabolic goal achievement with risk of chronic kidney disease. Front Public Health. 2022;10:1047794. doi: 10.3389/fpubh.2022.1047794.

33. Agustanti N., Soetedjo N.N.M., Damara F.A. et al. The association between metabolic dysfunction-associated fatty liver disease and chronic kidney disease: A systematic review and meta-analysis. Diabetes Metab Syndr. 2023;17(5):102780. doi: 10.1016/j.dsx.2023.102780.

34. Yeung M.W., Wong G.L., Choi K.C. et al. Advanced liver fibrosis but not steatosis is independently associated with albuminuria in Chinese patients with type 2 diabetes. J Hepatol. 2017: S0168-8278(17)32334-6. doi: 10.1016/j.jhep.2017.09.020.

35. Ciardullo S., Ballabeni C., Trevisan R. et al. Albuminuria and Chronic Kidney Disease in Patients with NAFLD: A Systematic Review and Meta-Analysis. Biomolecules. 2022;12(1):105. doi: 10.3390/biom12010105.

36. Krasner Ya.A., Osipenko M.F., Holin S.I., Litvinova N.V. Chronic kidney disease and non-alcoholic fatty liver disease - new pathogenetic links. Experimental and Clinical Gastroenterology. 2023;(4):140-144. (In Russ.) doi: 10.31146/1682-8658-ecg-212-4-140-144.@@ Краснер Я.А., Осипенко М.Ф., Холин С.И., Литвинова Н.В. Хроническая болезнь почек и неалкогольная жировая болезнь печени - новые патогенетические взаимосвязи. Экспериментальная и клиническая гастроэнтерология. 2023;(4):140-144. doi: 10.31146/1682-8658-ecg-212-4-140-144.

37. D’Agati V.D., Chagnac A., de Vries A.P. et al. Obesity-related glomerulopathy: clinical and pathologic characteristics and pathogenesis. Nat Rev Nephrol. 2016;12(8):453-71. doi: 10.1038/nrneph.2016.75.

38. Lonardo A., Byrne C.D., Targher G. Precision medicine approaches in metabolic disorders and target organ damage: where are we now, and where are we going? Metab Target Organ Damage. 2021;1:3. doi: 10.20517/mtod.2021.03.

39. Musso G., Cassader M., Cohney S. et al, Emerging Liver- Kidney Interactions in Nonalcoholic Fatty Liver Disease. Trends Mol. Med. 2015;21(10):645-662. doi: 10.1016/j.molmed.2015.08.005.

40. Cusi K. Nonalcoholic Fatty Liver Disease in Diabetes: A Call to Action. Diabetes Spectr. 2024;37(1):5-7. doi: 10.2337/dsi23-0015.

41. Kumar M., Dev S., Khalid M.U. et al. The Bidirectional Link Between Diabetes and Kidney Disease: Mechanisms and Management. Cureus. 2023;15(9): e45615. doi: 10.7759/cureus.45615.

42. Wasilewska N., Lebensztejn D.M. Non-alcoholic fatty liver disease and lipotoxicity. Clin Exp Hepatol. 2021;7(1):1-6. doi: 10.5114/ceh.2021.104441.

43. Branković M., Jovanović I., Dukić M. et al. Lipotoxicity as the Leading Cause of Non-Alcoholic Steatohepatitis.International Journal of Molecular Sciences. 2022; 23(9):5146. doi: 10.3390/ijms23095146.

44. Ren L., Cui H., Wang Y. et al. The role of lipotoxicity in kidney disease: From molecular mechanisms to therapeutic prospects. Biomed Pharmacother. 2023;161:114465. doi: 10.1016/j.biopha.2023.114465.

45. Wang T.N., Chen X., Li R. et al. SREBP-1 Mediates Angiotensin II-Induced TGF-β1 Upregulation and Glomerular Fibrosis. J Am Soc Nephrol. 2015;26(8):1839-54. doi: 10.1681/ASN.2013121332.

46. Ke Q., Yuan Q., Qin N. et al. UCP2-induced hypoxia promotes lipid accumulation and tubulointerstitial fibrosis during ischemic kidney injury. Cell Death Dis. 2020;11(1):26. doi: 10.1038/s41419-019-2219-4.

47. Zheng K.I., Fan J.G., Shi J.P. et al. From NAFLD to MAFLD: a “redefining” moment for fatty liver disease. Chin Med J (Engl). 2020;133(19):2271-2273. doi: 10.1097/CM9.0000000000000981.

48. Stefan N., Häring H.U. The role of hepatokines in metabolism. Nat Rev Endocrinol. 2013;9(3):144-52. doi: 10.1038/nrendo.2012.258.

49. Meex R.C.R., Watt M.J. Hepatokines: linking nonalcoholic fatty liver disease and insulin resistance. Nat Rev Endocrinol. 2017;13(9):509-520. doi: 10.1038/nrendo.2017.56.

50. Jensen-Cody S.O., Potthoff M.J. Hepatokines and metabolism: Deciphering communication from the liver. Mol Metab. 2021;44:101138. doi: 10.1016/j.molmet.2020.101138.

51. Gehrke N., Schattenberg J.M. Metabolic Inflammation-A Role for Hepatic Inflammatory Pathways as Drivers of Comorbidities in Nonalcoholic Fatty Liver Disease? Gastroenterology. 2020;158(7):1929-1947.e6. doi: 10.1053/j.gastro.2020.02.020.

52. Mihai S., Codrici E., Popescu I.D. et al. Inflammation-Related Mechanisms in Chronic Kidney Disease Prediction, Progression, and Outcome. J Immunol Res. 2018 Sep 6;2018:2180373. doi: 10.1155/2018/2180373.

53. Lazebnik L.B., Turkina S.V. Enterohepatocentrism as the basis of human psychosomatic pathology. Experimental and Clinical Gastroenterology. 2023;(8):9-23. (In Russ.) doi: 10.31146/1682-8658-ecg-216-8-9-23.@@ Лазебник Л.Б., Туркина С.В. Энтерогепатоцентризм как основа психосоматической патологии человека. Экспериментальная и клиническая гастроэнтерология. 2023;(8):9-23. doi: 10.31146/1682-8658-ecg-216-8-9-23.

54. Raj D., Tomar B., Lahiri A., Mulay S.R. The gut-liver-kidney axis: Novel regulator of fatty liver associated chronic kidney disease. Pharmacol Res. 2020;152:104617. doi: 10.1016/j.phrs.2019.104617.

55. Chen Y.Y., Chen D.Q., Chen L. et al. Microbiome-metabolome reveals the contribution of gut-kidney axis on kidney disease. J Transl Med. 2019;17(1):5. doi: 10.1186/s12967-018-1756-4.

56. Evenepoel P., Poesen R., Meijers B. The gut-kidney axis. Pediatr Nephrol. 2017;32(11):2005-2014. doi: 10.1007/s00467-016-3527-x.

57. Rukavina Mikusic N.L., Kouyoumdzian N.M., Choi M.R. Gut microbiota and chronic kidney disease: evidences and mechanisms that mediate a new communication in the gastrointestinal-renal axis. Pflugers Arch. 2020;472(3):303-320. doi: 10.1007/s00424-020-02352-x.

58. Vaziri N.D., Goshtasbi N., Yuan J. et al. Uremic plasma impairs barrier function and depletes the tight junction protein constituents of intestinal epithelium. Am J Nephrol. 2012;36(5):438-43. doi: 10.1159/000343886.

59. Sun C.Y., Chang S.C., Wu M.S. Uremic toxins induce kidney fibrosis by activating intrarenal renin-angiotensin-aldosterone system associated epithelial-to-mesenchymal transition. PLoS One. 2012;7(3): e34026. doi: 10.1371/journal.pone.0034026.

60. Tang Z., Yu S., Pan Y. The gut microbiome tango in the progression of chronic kidney disease and potential therapeutic strategies. J Transl Med. 2023;21(1):689. doi: 10.1186/s12967-023-04455-2.

61. Bennett B.J., de Aguiar Vallim T.Q., Wang Z. et al. Trimethylamine-N-oxide, a metabolite associated with atherosclerosis, exhibits complex genetic and dietary regulation. Cell Metab. 2013;17(1):49-60. doi: 10.1016/j.cmet.2012.12.011.

62. Stofan M., Guo G.L. Bile Acids and FXR: Novel Targets for Liver Diseases. Front Med (Lausanne). 2020;7:544. doi: 10.3389/fmed.2020.00544.

63. Clifford B.L., Sedgeman L.R., Williams K.J. et al. FXR activation protects against NAFLD via bile-acid-dependent reductions in lipid absorption. Cell Metab. 2021;33(8):1671-1684.e4. doi: 10.1016/j.cmet.2021.06.012.

64. Kim D.H., Park J.S., Choi H.I. et al. The critical role of FXR is associated with the regulation of autophagy and apoptosis in the progression of AKI to CKD. Cell Death Dis. 2021;12(4):320. doi: 10.1038/s41419-021-03620-z.

65. Byrne C.D. The Relationship Between Nonalcoholic Fatty Liver Disease and Chronic Kidney Disease. Gastroenterol Hepatol (N Y). 2022;18(9):549-552.

66. Levey A.S., Stevens L.A., Schmid C.H. et al. A new equation to estimate glomerular filtration rate. Ann Intern Med. 2009; 150(9): 604-12. doi: 10.7326/0003-4819-150-9-200905050-00006.

67. Levey A.S., Stevens L.A. Estimating GFR using the CKD Epidemiology Collaboration (CKD-EPI) creatinine equation: more accurate GFR estimates, lower CKD prevalence estimates, and better risk predictions. Am J Kidney Dis 2010; 55(4): 622-7. doi: 10.1053/j.ajkd.2010.02.337.

68. O’Gorman P., Naimimohasses S., Monaghan A. et al. Improvement in histological endpoints of MAFLD following a 12-week aerobic exercise intervention. Aliment Pharmacol Ther. 2020;52(8):1387-1398. doi: 10.1111/apt.15989.

69. Afshinnia F., Wilt T.J., Duval S. et al. Weight loss and proteinuria: systematic review of clinical trials and comparative cohorts. Nephrol Dial Transplant. 2010;25(4):1173-83. doi: 10.1093/ndt/gfp640.

70. Schwasinger-Schmidt T.E., Elhomsy G., Paull-Forney B.G. Impact of a Community-Based Weight Loss Program on Renal Function. Cureus 2020; 12(5): e8101. doi: 10.7759/cureus.8101.

71. Ibrahim A.A., Althomali O.W., Atyia M.R. et al. A systematic review of trials investigating the efficacy of exercise training for functional capacity and quality of life in chronic kidney disease patients.Int Urol Nephrol. 2022;54: 289-298. doi: 10.1007/s11255-021-02917-4.

72. Leehey D.J., Collins E., Kramer H.J. et al. Structured Exercise in Obese Diabetic Patients with Chronic Kidney Disease: A Randomized Controlled Trial. Am J Nephrol. 2016;44(1):54-62. doi: 10.1159/000447703.

73. Sun D.Q., Targher G., Byrne C.D. et al. An international Delphi consensus statement on metabolic dysfunction-associated fatty liver disease and risk of chronic kidney disease. Hepatobiliary Surg Nutr. 2023 Jun 1;12(3):386-403. doi: 10.21037/hbsn-22-421.

74. [Arterial hypertension in adults] Clinical guidelines Ministry of Health of the Russian Federation 2024. 220 р. (in Russ.) Available at: https://cr.minzdrav.gov.ru/schema/62_3 (Accessed: 05.10.2024.)@@ Артериальная гипертензия у взрослых. Клинические рекомендации Министерства здравоохранения РФ 2024. ID 62. 220 с. https://cr.minzdrav.gov.ru/schema/62_3

75. Orlic L., Mikolasevic I., Lukenda V. et al. Nonalcoholic fatty liver disease and the renin-angiotensin system blockers in the patients with chronic kidney disease. Wien Klin Wochenschr. 2015;127(9-10):355-62. doi: 10.1007/s00508-014-0661-y.

76. Pelusi S., Petta S., Rosso C. et al. Renin-Angiotensin System Inhibitors, Type 2 Diabetes and Fibrosis Progression: An Observational Study in Patients with Nonalcoholic Fatty Liver Disease. PLoS One. 2016;11(9): e0163069. doi: 10.1371/journal.pone.0163069.

77. Zhang X., Wong G.L., Yip T.C. et al. Angiotensin-converting enzyme inhibitors prevent liver-related events in nonalcoholic fatty liver disease. Hepatology. 2022;76(2):469-482. doi: 10.1002/hep.32294.

78. Paschos P., Tziomalos K. Nonalcoholic fatty liver disease and the renin-angiotensin system: Implications for treatment. World J Hepatol. 2012;4(12):327-31. doi: 10.4254/wjh.v4.i12.327.

79. Singh S., Khera R., Allen A.M. et al.Comparative effectiveness of pharmacological interventions for nonalcoholic steatohepatitis: A systematic review and network meta-analysis. Hepatology. 2015;62(5):1417-32. doi: 10.1002/hep.27999.

80. Panigrahi M.K., Anirvan P. Letter to the editor: Using angiotensin-converting enzyme inhibitors to prevent liver-related events in NAFLD-Revisiting the renin-angiotensin-aldosterone system pathways. Hepatology. 2022;76(2): E32-E33. doi: 10.1002/hep.32432.

81. Li Y., Xu H., Wu W. et al. Clinical application of angiotensin receptor blockers in patients with non-alcoholic fatty liver disease: a systematic review and meta-analysis. Oncotarget. 2018;9(35):24155-24167. doi: 10.18632/oncotarget.23816.

82. Mantovani A., Petracca G., Beatrice G. et al. Glucagon-Like Peptide-1 Receptor Agonists for Treatment of Nonalcoholic Fatty Liver Disease and Nonalcoholic Steatohepatitis: An Updated Meta-Analysis of Randomized Controlled Trials. Metabolites. 2021;11(2):73. doi: 10.3390/metabo11020073.

83. von Scholten B.J., Kreiner F.F., Rasmussen S. et al. The potential of GLP-1 receptor agonists in type 2 diabetes and chronic kidney disease: from randomised trials to clinical practice. Ther Adv Endocrinol Metab. 2022;13:20420188221112490. doi: 10.1177/20420188221112490.

84. DAPA-CKD Trial Committees and Investigators. Effects of dapagliflozin on major adverse kidney and cardiovascular events in patients with diabetic and non-diabetic chronic kidney disease: a prespecified analysis from the DAPA-CKD trial. Lancet Diabetes Endocrinol. 2021; 9(1): 22-31. doi: 10.1016/S2213-8587(20)30369-7.

85. Nuffield Department of Population Health Renal Studies Group; SGLT2 inhibitor Meta-Analysis Cardio-Renal Trialists” Consortium. Impact of diabetes on the effects of sodium glucose co-transporter-2 inhibitors on kidney outcomes: collaborative meta-analysis of large placebo-controlled trials. Lancet 2022; 400(10365): 1788-1801. doi: 10.1016/S0140-6736(22)02074-8.

86. Tsai W.C., Hsu S.P., Chiu Y.L. et al. Cardiovascular and renal efficacy and safety of sodium-glucose cotransporter-2 inhibitors in patients without diabetes: a systematic review and meta-analysis of randomised placebo-controlled trials. BMJ Open. 2022; 12(10): e060655. doi: 10.1136/bmjopen-2021-060655.

87. Rong Xu, Difei Lian, Yan Xie et al. SGLT-2 Inhibitors for Non-Alcoholic Fatty Liver Disease: A Review. Front. Biosci. (Landmark Ed). 2023, 28(7), 134. doi: 10.31083/j.fbl2807134.

88. Mantovani A., Petracca G., Csermely A. et al. Sodium-Glucose Cotransporter-2 Inhibitors for Treatment of Nonalcoholic Fatty Liver Disease: A Meta-Analysis of Randomized Controlled Trials. Metabolites. 2020;11(1):22. doi: 10.3390/metabo11010022.

89. Gansevoort R.T., Correa-Rotter R., Hemmelgarn B.R. et al. Chronic kidney disease and cardiovascular risk: epidemiology, mechanisms, and prevention. Lancet. 2013;382(9889):339-52. doi: 10.1016/S0140-6736(13)60595-4.

90. Saeed D., Reza T., Shahzad M.W. et al. Navigating the Crossroads: Understanding the Link Between Chronic Kidney Disease and Cardiovascular Health. Cureus. 2023;15(12): e51362. doi: 10.7759/cureus.51362.

91. Manjunath G., Tighiouart H., Ibrahim H. et al. Level of kidney function as a risk factor for atherosclerotic cardiovascular outcomes in the community. J Am Coll Cardiol. 2003;41(1):47-55. doi: 10.1016/s0735-1097(02)02663-3.

92. Tunnicliffe D.J., Palmer S.C., Cashmore B.A. et al. HMG CoA reductase inhibitors (statins) for people with chronic kidney disease not requiring dialysis. Cochrane Database Syst Rev. 2023;11(11): CD007784. doi: 10.1002/14651858.CD007784.pub3.

93. Wang J., Chen Z., Qiu Y. et al. Statins Have an Anti-Inflammation in CKD Patients: A Meta-Analysis of Randomized Trials. Biomed Res Int. 2022 Oct 22;2022:4842699. doi: 10.1155/2022/4842699.

94. Sanguankeo A., Upala S., Cheungpasitporn W. et al. Effects of Statins on Renal Outcome in Chronic Kidney Disease Patients: A Systematic Review and Meta-Analysis. PLoS One. 2015;10(7): e0132970. doi: 10.1371/journal.pone.0132970.

95. Martin A., Lang S., Goeser T. et al. Management of Dyslipidemia in Patients with Non-Alcoholic Fatty Liver Disease. Curr Atheroscler Rep. 2022;24(7):533-546. doi: 10.1007/s11883-022-01028-4.

96. Ho A., Kiener T., Nguyen Q.N., Le Q.A. Effect of statin use on liver enzymes and lipid profile in patients with non-alcoholic fatty liver disease (NAFLD). J Clin Lipidol. 2024 Jul-Aug;18(4): e501-e508. doi: 10.1016/j.jacl.2024.03.003.

97. Zhou H., Toshiyoshi M., Zhao W. et al. Statins on nonalcoholic fatty liver disease: A systematic review and meta-analysis of 14 RCTs. Medicine (Baltimore). 2023;102(26): e33981. doi: 10.1097/MD.0000000000033981.

98. Ayada I., van Kleef L.A., Zhang H. et al. Dissecting the multifaceted impact of statin use on fatty liver disease: a multidimensional study. EBioMedicine. 2023;87:104392. doi: 10.1016/j.ebiom.2022.104392.

99. Pastori D., Pani A., Di Rocco A. et al. Statin liver safety in non-alcoholic fatty liver disease: A systematic review and metanalysis. Br J Clin Pharmacol. 2022;88(2):441-451. doi: 10.1111/bcp.14943.

100. Nascimbeni F., Pellegrini E., Lugari S. et al. Statins and nonalcoholic fatty liver disease in the era of precision medicine: More friends than foes. Atherosclerosis. 2019;284:66-74. doi: 10.1016/j.atherosclerosis.2019.02.028.

101. [Type 2 diabetes mellitus in adults]. Clinical guidelines Ministry of Health of the Russian Federation 2022. ID 290. (in Russ.)@@ Сахарный диабет 2 типа у взрослых. Клинические рекомендации Министерства здравоохранения РФ. ID 290.

102. Zelniker T.A., Wiviott S.D., Raz I. et al. SGLT2 inhibitors for primary and secondary prevention of cardiovascular and renal outcomes in type 2 diabetes: a systematic review and meta-analysis of cardiovascular outcome trials. Lancet 2019; 393(10166): 31-39. doi: 10.1016/S0140-6736(18)32590-X.

103. Seidu S., Kunutsor S.K., Cos X. et al. SGLT2 inhibitors and renal outcomes in type 2 diabetes with or without renal impairment: A systematic review and meta-analysis. Prim Care Diabetes. 2018; 12(3): 265-283. doi: 10.1016/j.pcd.2018.02.001.

104. Toyama T., Neuen B.L., Jun M. et al. Effect of SGLT2 inhibitors on cardiovascular, renal and safety outcomes in patients with type 2 diabetes mellitus and chronic kidney disease: A systematic review and meta-analysis. Diabetes Obes Metab. 2019; 21(5): 1237-1250. doi: 10.1111/dom.13648.

105. Feng C., Wu M., Chen Z. et al. Effect of SGLT2 inhibitor on renal function in patients with type 2 diabetes mellitus: a systematic review and meta-analysis of randomized controlled trials.Int Urol Nephrol. 2019; 51(4): 655-669. doi: 10.1007/s11255-019-02112-6.

106. Qiu M., Ding L.L., Wei X.B. et al.Comparative efficacy of GLP-1 RAs and SGLT2is for prevention of major adverse cardiovascular events in type 2 diabetes: a network meta-analysis. J Cardiovasc Pharmacol 2020. doi: 10.1097/FJC.0000000000000916.

107. Kristensen S.L., Rørth R., Jhund P.S. et al. Cardiovascular, mortality, and kidney outcomes with GLP-1 receptor agonists in patients with type 2 diabetes: a systematic review and meta-analysis of cardiovascular outcome trials. Lancet Diabetes Endocrinol 2019; 7(10): 776-785. doi: 10.1016/S2213-8587(19)30249-9.


Review

For citations:


Turkina S.V., Tyshchenko I.A., Titarenko M.N. Non-alcoholic fatty liver disease and chronic kidney disease. Experimental and Clinical Gastroenterology. 2024;(10):49-61. (In Russ.) https://doi.org/10.31146/1682-8658-ecg-230-10-49-61

Views: 6


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1682-8658 (Print)