Preview

Experimental and Clinical Gastroenterology

Advanced search

Multidirectional influence of helminths on allergic diseases and immunity

https://doi.org/10.31146/1682-8658-ecg-231-11-157-163

Abstract

The prevalence of allergic diseases is increasing every year. The development of allergic diseases is based on the interaction of a genetic predisposition to the Th2 immune response and various epigenetic factors. A popular explanation for the increase in allergy prevalence is the hygiene hypothesis, which explains the allergy epidemic by the inability to develop appropriate immune regulation due to a decrease in microbial diversity. The observation that some helminth infections negatively correlate with allergic and inflammatory diseases has led to an expansion of the field of research on parasite immunomodulation. However, the relationship between allergic diseases and helminthic infections is contradictory. Helminthiasis can have both stimulating and suppressive effects on allergic reactions. Intestinal helminths are capable of altering the host’s response to other infectious agents. In particular, they enhance the antiviral immune response, affect the balance of commensal organisms, changing the size of the microbiome and its qualitative composition. Helminths suppress inflammatory reactions. Thanks to this knowledge, it has become possible to use helminths as therapeutic agents for various diseases, such as inflammatory bowel diseases, multiple sclerosis, celiac disease. However, the results of these studies are ambiguous, and further observations are needed. Increasing scientific knowledge about the mechanism of immunological modification as a result of helminth infection and understanding the interaction between helminth infections and allergic diseases is useful for the development of potentially new treatments using helminths. Thanks to which it will be possible to reproduce and adapt the beneficial effects mediated by helminths, in the absence of harmful effects arising from a parasitic infection.

About the Authors

E. V. Nadey
Omsk State Medical University
Russian Federation


E. S. Lepehina
Omsk State Medical University
Russian Federation


E. A. Lyalyukova
Omsk State Medical University
Russian Federation


E. V. Usacheva
Omsk State Medical University
Russian Federation


References

1. Hossny E., Ebisawa M., El-Gamal Y. et al. Challenges of managing food allergy in the developing world. World Allergy Organ J. 2019;12(11):100089. doi: 10.1016/j.waojou.2019.100089.

2. Potaczek D.P., Hard H., Michel S. et al. Epigenetics and allergy: from basic mechanisms to clinical applications. Epigenomics. 2017;9(4):539-571. doi: 10.2217/epi-2016-0162.

3. Figueiredo C.A., Barreto M.L., Alcantara-Neves N.M. et al. Coassociations between IL10 polymorphisms, IL-10 production, helminth infection, and asthma/wheeze in an urban tropical population in Brazil. Allergy Clin Immunol. 2013;131(6):1683-90. doi: 10.1016/j.jaci.2012.10.043.

4. Zaiss M.M., Harris N.L.Interactions between the intestinal microbiome and helminth parasites. Parasite Immunol. 2016;38(1):5-11. doi: 10.1111/pim.12274.

5. Navarro S., Ferreira I., Loukas A. The hookworm pharmacopoeia for inflammatory diseases.International Journal for Parasitology. 2013;43(3-4), 225-231. doi: 10.1016/j.ijpara.2012.11.005.

6. Sroka-Tomaszewska J., Trzeciak M. Molecular Mechanisms of Atopic Dermatitis Pathogenesis.Int J Mol Sci. 2021;22(8):4130. doi: 10.3390/ijms22084130.

7. Hammad H., Lambrecht B.N. The basic immunology of asthma. Cell. 2021;184(6):1469-1485. doi: 10.1016/j.cell.2021.02.016.

8. Wise S.K., Damask C., Roland L.T. et al.International consensus statement on allergy and rhinology: Allergic rhinitis - 2023.Int Forum Allergy Rhinol. 2023;13(4):293-859. doi: 10.1002/alr.23090.

9. Peters R.L., Krawiec M., Koplin J.J., Santos A.F. Update on food allergy. Pediatr Allergy Immunol. 2021;32(4):647-657. doi: 10.1111/pai.13443.

10. Grencis R.K. Immunity to helminths: resistance, regulation, and susceptibility to gastrointestinal nematodes. Annu Rev Immunol. 2015;33:201-25. doi: 10.1146/annurev-immunol-032713-120218.

11. Medzhitov R., Schneider D.S., Soares M.P. Disease tolerance as a defense strategy. Science. 2012;335(6071):936-41. doi: 10.1126/science.1214935.

12. Maizels R.M, Yazdanbakhsh M. Immune regulation by helminth parasites: cellular and molecular mechanisms. Nat Rev Immunol. 2003;3(9):733-44. doi: 10.1038/nri1183.

13. McSorley H.J., Maizels R.M. Helminth infections and host immune regulation. Clin Microbiol Rev. 2012;25(4):585-608. doi: 10.1128/CMR.05040-11.

14. Mbow M., Larkin B.M., Meurs L. et al. T-helper 17 cells are associated with pathology in human schistosomiasis. J Infect Dis. 2013;207(1):186-95. doi: 10.1093/infdis/jis654.

15. Nogueira D.S., Gazzinelli-Guimarães P.H., Barbosa F.S. et al. Multiple Exposures to Ascaris suum Induce Tissue Injury and Mixed Th2/Th17 Immune Response in Mice. PLoS Negl Trop Dis. 2016;10(1): e0004382. doi: 10.1371/journal.pntd.0004382.

16. Babu S., Bhat S.Q., Pavan Kumar N. et al. Filarial lymphedema is characterized by antigen-specific Th1 and th17 proinflammatory responses and a lack of regulatory T cells. PLoS Negl Trop Dis. 2009;3(4): e420. doi: 10.1371/journal.pntd.0000420.

17. Turner J.E., Morrison P.J., Wilhelm C. et al. IL-9-mediated survival of type 2 innate lymphoid cells promotes damage control in helminth-induced lung inflammation. J Exp Med. 2013;210(13):2951-65. doi: 10.1084/jem.20130071.

18. Van Tong H., Brindley P.J., Meyer C.G., Velavan T.P. Parasite Infection, Carcinogenesis and Human Malignancy. EBioMedicine. 2017;15:12-23. doi: 10.1016/j.ebiom.2016.11.034.

19. Smout M.J., Sotillo J., Laha T. et al. Carcinogenic Parasite Secretes Growth Factor That Accelerates Wound Healing and Potentially Promotes Neoplasia. PLoS Pathog. 2015;11(10): e1005209. doi: 10.1371/journal.ppat.1005209.

20. Tsai M., Starkl P., Marichal T., Galli S.J. Testing the ‘toxin hypothesis of allergy’: mast cells, IgE, and innate and acquired immune responses to venoms. Curr Opin Immunol. 2015;36:80-7. doi: 10.1016/j.coi.2015.07.001.

21. Torow N., Marsland B.J., Hornef M.W., Gollwitzer E.S. Neonatal mucosal immunology. Mucosal Immunol. 2017;10(1):5-17. doi: 10.1038/mi.2016.81.

22. Saluzzo S., Gorki A.D., Rana B.M.J., Martins R. et al. First-Breath-Induced Type 2 Pathways Shape the Lung Immune Environment. Cell Rep. 2017;18(8):1893-1905. doi: 10.1016/j.celrep.2017.01.071.

23. Odegaard J.I., Lee M.W., Sogawa Y. et al. Perinatal Licensing of Thermogenesis by IL-33 and ST2. Cell. 2016;166(4):841-854. doi: 10.1016/j.cell.2016.06.040.

24. Knipper J.A., Willenborg S., Brinckmann J. et al.Interleukin-4 Receptor α Signaling in Myeloid Cells Controls Collagen Fibril Assembly in Skin Repair. Immunity. 2015;43(4):803-16. doi: 10.1016/j.immuni.2015.09.005.

25. Heredia J.E., Mukundan L., Chen F.M. et al. Type 2 innate signals stimulate fibro/adipogenic progenitors to facilitate muscle regeneration. Cell. 2013;153(2):376-88. doi: 10.1016/j.cell.2013.02.053.

26. Goh Y.P., Henderson N.C., Heredia J.E. et al. Eosinophils secrete IL-4 to facilitate liver regeneration. Proc Natl Acad Sci U S A. 2013;110(24):9914-9. doi: 10.1073/pnas.1304046110.

27. Blériot C., Dupuis T., Jouvion G. et al. Liver-resident macrophage necroptosis orchestrates type 1 microbicidal inflammation and type-2-mediated tissue repair during bacterial infection. Immunity. 2015;42(1):145-58. doi: 10.1016/j.immuni.2014.12.020.

28. Strachan D.P. Hay fever, hygiene, and household size. BMJ. 1989;299(6710):1259-60. doi: 10.1136/bmj.299. 6710.1259.

29. Rook G.A., Adams V., Hunt J. et al. Mycobacteria and other environmental organisms as immunomodulators for immunoregulatory disorders. Springer Semin Immunopathol. 2004;25(3-4):237-55. doi: 10.1007/s00281-003-0148-9.

30. Haahtela T. A biodiversity hypothesis. Allergy. 2019;74(8):1445-1456. doi: 10.1111/all.13763.

31. Santiago H.C., Nutman T.B. Human Helminths and Allergic Disease: The Hygiene Hypothesis and Beyond. Am J Trop Med Hyg. 2016;95(4):746-753. doi: 10.4269/ajtmh.16-0348.

32. Leonardi-Bee J., Pritchard D., Britton J. Asthma and current intestinal parasite infection: systematic review and meta-analysis. Am J Respir Crit Care Med. 2006;174(5):514-23. doi: 10.1164/rccm.200603-331OC.

33. Feary J., Britton J., Leonardi-Bee J. Atopy and current intestinal parasite infection: a systematic review and meta-analysis. Allergy. 2011;66(4):569-78. doi: 10.1111/j.1398-9995.2010.02512.x.

34. Li L., Gao W., Yang X. et al. Asthma and toxocariasis. Ann Allergy Asthma Immunol. 2014;113(2):187-92. doi: 10.1016/j.anai.2014.05.016.

35. Mohammadzadeh I., Riahi S.M., Saber V. et al. The relationship between Toxocara species seropositivity and allergic skin disorders: a systematic review and meta-analysis. Trans R Soc Trop Med Hyg. 2018;112(12):529-537. doi: 10.1093/trstmh/try094.

36. Arrais M., Maricoto T., Nwaru B.I. et al. Helminth infections and allergic diseases: Systematic review and meta-analysis of the global literature. J Allergy Clin Immunol. 2022;149(6):2139-2152. doi: 10.1016/j.jaci.2021.12.777.

37. Burbank A.J., Sood A.K., Kesic M.J. et al. Environmental determinants of allergy and asthma in early life. J Allergy Clin Immunol. 2017;140(1):1-12. doi: 10.1016/j.jaci.2017.05.010.

38. Jackson D.J., Makrinioti H., Rana B.M. et al. IL-33-dependent type 2 inflammation during rhinovirus-induced asthma exacerbations in vivo. Am J Respir Crit Care Med. 2014;190(12):1373-82. doi: 10.1164/rccm.201406-1039OC.

39. Osbourn M., Soares D.C., Vacca F. et al. HpARI Protein Secreted by a Helminth Parasite Suppresses Interleukin-33. Immunity. 2017;47(4):739-751.e5. doi: 10.1016/j.immuni.2017.09.015.

40. McFarlane A.J., McSorley H.J., Davidson D.J. et al. Enteric helminth-induced type I interferon signaling protects against pulmonary virus infection through interaction with the microbiota. J Allergy Clin Immunol. 2017;140(4):1068-1078.e6. doi: 10.1016/j.jaci.2017.01.016.

41. Scheer S., Krempl C., Kallfass C. et al. S. mansoni bolsters anti-viral immunity in the murine respiratory tract. PLoS One. 2014;9(11): e112469. doi: 10.1371/journal.pone.0112469.

42. Zimmermann P., Messina N., Mohn W.W. et al. Association between the intestinal microbiota and allergic sensitization, eczema, and asthma: A systematic review. J Allergy Clin Immunol. 2019;143(2):467-485. doi: 10.1016/j.jaci.2018.09.025.

43. Gollwitzer E.S., Saglani S., Trompette A. et al. Lung microbiota promotes tolerance to allergens in neonates via PD-L1. Nat Med. 2014;20(6):642-7. doi: 10.1038/nm.3568.

44. Ramanan D., Bowcutt R., Lee S.C. et al. Helminth infection promotes colonization resistance via type 2 immunity. Science. 2016;352(6285):608-12. doi: 10.1126/science.aaf3229.

45. Jenkins T.P., Rathnayaka Y., Perera P.K. et al. Infections by human gastrointestinal helminths are associated with changes in faecal microbiota diversity and composition. PLoS One. 2017;12(9): e0184719. doi: 10.1371/journal.pone.0184719.

46. Zaiss M.M., Harris N.L.Interactions between the intestinal microbiome and helminth parasites. Parasite Immunol. 2016;38(1):5-11. doi: 10.1111/pim.12274.

47. Peachey L.E., Jenkins T.P., Cantacessi C. This Gut Ain’t Big Enough for Both of Us. Or Is It? Helminth-Microbiota Interactions in Veterinary Species. Trends Parasitol. 2017;33(8):619-632. doi: 10.1016/j.pt.2017.04.004.

48. Reynolds L.A., Finlay B.B. Early life factors that affect allergy development. Nat Rev Immunol. 2017;17(8):518-528. doi: 10.1038/nri.2017.39.

49. Lee S.C., Tang M.S., Lim Y.A. et al. Helminth colonization is associated with increased diversity of the gut microbiota. PLoS Negl Trop Dis. 2014;8(5): e2880. doi: 10.1371/journal.pntd.0002880.

50. Ramanan D., Bowcutt R., Lee S.C. et al. Helminth infection promotes colonization resistance via type 2 immunity. Science. 2016;352(6285):608-12. doi: 10.1126/science.aaf3229.

51. Rausch S., Midha A., Kuhring M. et al. Parasitic Nematodes Exert Antimicrobial Activity and Benefit From Microbiota-Driven Support for Host Immune Regulation. Front Immunol. 2018;9:2282. doi: 10.3389/fimmu.2018.02282.

52. Robinson M.W., Hutchinson A.T., Dalton J.P., Donnelly S. Peroxiredoxin: a central player in immune modulation. Parasite Immunol. 2010;32(5):305-13. doi: 10.1111/j.1365-3024.2010.01201.x.

53. Zaiss M.M., Harris N.L.Interactions between the intestinal microbiome and helminth parasites. Parasite Immunol. 2016;38(1):5-11. doi: 10.1111/pim.12274.

54. Moyat M., Lebon L., Perdijk O. et al. Microbial regulation of intestinal motility provides resistance against helminth infection. Mucosal Immunol. 2022;15(6):1283-1295. doi: 10.1038/s41385-022-00498-8.

55. Jin X., Liu Y., Wang J. et al. β-Glucan-triggered Akkermansia muciniphila expansion facilitates the expulsion of intestinal helminth via TLR2 in mice. Carbohydr Polym. 2022;275:118719. doi: 10.1016/j.carbpol.2021.118719.

56. Rosa B.A., Supali T., Gankpala L. et al. Differential human gut microbiome assemblages during soil-transmitted helminth infections in Indonesia and Liberia. Microbiome. 2018;6(1):33. doi: 10.1186/s40168-018-0416-5.

57. Sakaguchi S., Yamaguchi T., Nomura T., Ono M. Regulatory T cells and immune tolerance. Cell. 2008;133(5):775-87. doi: 10.1016/j.cell.2008.05.009.

58. Belkaid Y., Tarbell K. Regulatory T cells in the control of host-microorganism interactions. Annu Rev Immunol. 2009;27:551-89. doi: 10.1146/annurev.immunol.021908.132723.

59. Belkaid Y. Regulatory T cells and infection: a dangerous necessity. Nat Rev Immunol. 2007;7(11):875-88. doi: 10.1038/nri2189.

60. Abdoli A., Mirzaian Ardakani H. Potential application of helminth therapy for resolution of neuroinflammation in neuropsychiatric disorders. Metab Brain Dis. 2020;35(1):95-110. doi: 10.1007/s11011-019-00466-5.

61. Shimokawa C., Kato T., Takeuchi T. et al. CD8+ regulatory T cells are critical in prevention of autoimmune-mediated diabetes. Nat Commun. 2020;11(1):1922. doi: 10.1038/s41467-020-15857-x.

62. Xu J., Liu M., Yu P. Et al. Effect of recombinant Trichinella spiralis cysteine proteinase inhibitor on TNBS-induced experimental inflammatory bowel disease in mice.Int Immunopharmacol. 2019;66:28-40. doi: 10.1016/j.intimp.2018.10.043.

63. Summers R.W., Elliott D.E., Urban J.F. et al. Trichuris suis therapy for active ulcerative colitis: a randomized controlled trial. Gastroenterology. 2005;128(4): 825-32. doi: 10.1053/j.gastro.2005.01.005.

64. Tong H., Brindley P.J., Meyer C.G., Velavan T.P. Parasite Infection, Carcinogenesis and Human Malignancy. EBioMedicine. 2017;15:12-23.doi: 10.1016/j.ebiom.2016.11.034.

65. Fleming J.O., Isaak A., Lee J.E. et al. Probiotic helminth administration in relapsing-remitting multiple sclerosis: a phase 1 study. Mult Scler 2011;17:743-54. doi:10.1177/1352458511398054.

66. Wammes L.J., Mpairwe H., Elliott A.M. et al. Helminth therapy or elimination: epidemiological, immunological, and clinical considerations. Lancet Infect Dis. 2014;14(11):1150-1162. doi: 10.1016/S1473-3099(14)70771-6.

67. Croese J., Giacomin P., Navarro S. et al. Experimental hookworm infection and gluten microchallenge promote tolerance in celiac disease. J Allergy Clin Immunol. 2015;135(2):508-16. doi: 10.1016/j.jaci.2014.07.022.

68. Daveson A.J., Jones D.M., Gaze S. et al. Effect of hookworm infection on wheat challenge in celiac disease - a randomised double-blinded placebo-controlled trial. PLoS One. 2011;6(3): e17366. doi: 10.1371/journal.pone.0017366.

69. Navarro S., Pickering D.A., Ferreira I.B. et al. Hookworm recombinant protein promotes regulatory T cell responses that suppress experimental asthma. Sci Transl Med. 2016;8(362):362ra143. doi: 10.1126/scitranslmed.aaf8807.


Review

For citations:


Nadey E.V., Lepehina E.S., Lyalyukova E.A., Usacheva E.V. Multidirectional influence of helminths on allergic diseases and immunity. Experimental and Clinical Gastroenterology. 2024;(11):157-163. (In Russ.) https://doi.org/10.31146/1682-8658-ecg-231-11-157-163

Views: 39


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1682-8658 (Print)