Preview

Experimental and Clinical Gastroenterology

Advanced search

Endocrine function of adipose, muscle, nervous and bone tissue in patients with ulcerative colitis

https://doi.org/10.31146/1682-8658-ecg-231-11-60-69

Abstract

Purpose of the study: Adipokines, myokines, neurotrophins, hormones and growth factors have a pivotal role on the control of inflammatory processes in the body. However, the relationship between them in development of ulcerative colitis (UC) still remains unclear. Taking this into account, the purpose of this study was to determine the level and relationships between the blood concentrations of adipokines, myokines, neurotrophins and growth factors in patients with ulcerative colitis. Materials and methods: The studies included 19 healthy men and 18 men with UC, as well as 91 healthy women and 29 women with UC. In the blood samples of the subjects was determined the level of leptin, adiponectin, resistin, apelin, irisin, adipsin, myostatin, FGF21, osteocrin, oncostatin, insulin, VEGF, FABP3, BDNF, NGF and fractalkine using a multiplex analysis, and the correlation relationships between them were studied too. Results: Studies have shown that in patients with UC, regardless of gender, there was a decrease in the levels of leptin, insulin and NGF in the blood. In addition, in men with UC, the level of osteocrine decreased, and in women, the concentration of apelin and VEGF decreased, and the level of BDNF in the blood increased. Conclusions: The emerging changes make significant adjustments during the inflammatory process in the intestine in UC and form the prerequisites for the emergence of gender characteristics in the formation of extraintestinal complications of this disease.

About the Authors

A. V. Shestopalov
Endocrinology research center; N. I. Pirogov Russian National Research Medical University
Russian Federation


V. V. Davydov
Endocrinology research center; N. I. Pirogov Russian National Research Medical University
Russian Federation


K. P. Merkel
Endocrinology research center; N. I. Pirogov Russian National Research Medical University
Russian Federation


S. R. Abdulkhakov
Kazan (Volga region) Federal University; Kazan State Medical University
Russian Federation


G. F. Shakirova
Kazan City polyclinic № 21
Russian Federation


A. K. Odintsova
Republican Clinical Hospital Republic of Tatarstan
Russian Federation


R. A. Abdulkhakov
Kazan State Medical University
Russian Federation


T. V. Grigoryeva
Kazan (Volga region) Federal University
Russian Federation


A. V. Laikov
Kazan (Volga region) Federal University
Russian Federation


V. A. Sorokin
N. I. Pirogov Russian National Research Medical University
Russian Federation


A. A. Ivanova
Endocrinology research center
Russian Federation


S. A. Roumiantsev
Endocrinology research center; N. I. Pirogov Russian National Research Medical University
Russian Federation


References

1. Segal J.P., LeBlanc J.F., Hart A.L. Ulcerative colitis: an update. Clin Med (Lond), 2021, vol. 21, no 2, pp. 135-139. doi: 10.7861/clinmed.2021-0080.

2. Lugovkina A.A., Rudakova L.O., Kryukova N.A. et al. Features of diagnostics and treatment of nonspecific ulcer colitis. Experimental and Clinical Gastroenterology. 2019;164(4):10-16. (In Russ.) doi: 10.31146/1682-8658-ecg-164-4-10-16.@@ Луговкина А.А., Рудакова Л.О., Крюкова Н.А. и соавт. Особенности диагностики и лечения неспецифического язвенного колита. Экспериментальная и клиническая гастроэнтерология. 2019;164(4):10-16. doi: 10.31146/1682-8658-ecg-164-4-10-16.

3. Zhang Y.Z., Li Y.Y. Inflammatory bowel disease: pathogenesis. World J Gastroenterol. 2014;20(1):91-99. doi: 10.3748/wjg.v20.i1.91.

4. Saez A., Gomez-Bris R., Herrero-Fernandez B. et al. Innate Lymphoid Cells in Intestinal Homeostasis and Inflammatory Bowel Disease.Int J Mol Sci. 2021;22(14):7618. doi: 10.3390/ijms22147618.

5. Al-Bayati L., Nayeri Fasaei B., Merat S., Bahonar A. Longitudinal Analyses of Gut-Associated Bacterial Microbiota in Ulcerative Colitis Patients. Arch Iran Med. 2018;21(12):578-584.

6. Ferro J.M., Oliveira Santos M. Neurology of inflammatory bowel disease. J Neurol Sci. 2021;(424):117426. doi: 10.1016/j.jns.2021.117426.

7. Caio G., Lungaro L., Caputo F. et al. Recurrent myocarditis in a patient with active ulcerative colitis: a case report and review of the literature. BMJ Open Gastroenterol, 2021;8(1): e000587. doi: 10.1136/bmjgast-2020-000587.

8. Massironi S., Mulinacci G., Gallo C. et al. The oft-overlooked cardiovascular complications of inflammatory bowel disease. Expert Rev Clin Immunol. 2023;19(4):375-391. doi: 10.1080/1744666X.2023.2174971.

9. Pagani K., Lukac D., Bhukhan A., McGee J.S. Cutaneous Manifestations of Inflammatory Bowel Disease: A Basic Overview. Am J Clin Dermatol. 2022;23(4):481-497. doi: 10.1007/s40257-022-00689-w.

10. Vavricka S.R., Greuter T., Zeitz J. Extraintestinal manifestations in chronic inflammatory bowel diseases. Ther Umsch. 2019;75(5):281-285. doi: 10.1024/0040-5930/a001004.

11. Hall C.V., Radford-Smith G., Savage E. et al. Brain signatures of chronic gut inflammation. Front Psychiatry. 2023;(14):1250268. doi: 10.3389/fpsyt.2023.1250268.

12. Waluga M., Hartleb M., Boryczka G. et al. Serum adipokines in inflammatory bowel disease. World J Gastroenterol. 2014;20(22):6912-6917. doi: 10.3748/wjg.v20.i22.6912.

13. Kreuter R., Wankell M., Ahlenstiel G., Hebbard L. The role of obesity in inflammatory bowel disease. Biochim Biophys Acta Mol Basis Dis. 2019;1865(1):63-72. doi: 10.1016/j.bbadis.2018.10.020.

14. Kwon J., Lee C., Heo S. et al. DSS-induced colitis is associated with adipose tissue dysfunction and disrupted hepatic lipid metabolism leading to hepatosteatosis and dyslipidemia in mice. Sci Rep. 2021;11(1):5283. doi: 10.1038/s41598-021-84761-1.

15. Ezirike L.J., He Z., Chikwava K. et al. Oncostatin-M Does Not Predict Treatment Response in Inflammatory Bowel Disease in a Pediatric Cohort. J Pediatr Gastroenterol Nutr. 2021;73(3):352-357. doi: 10.1097/MPG.0000000000003201.

16. Cao Y., Dai Y., Zhang L. et al.Combined Use of Fecal Biomarkers in Inflammatory Bowel Diseases: Oncostatin M and Calprotectin. J Inflamm Res. 2021;(14):6409-6419. doi: 10.2147/JIR.S342846.

17. Meir M., Burkard N., Ungewiß H. et al. Neurotrophic factor GDNF regulates intestinal barrier function in inflammatory bowel disease. J Clin Invest. 2019;129(7):2824-2840. doi: 10.1172/JCI120261.

18. Wysocka M.B., Pietraszek-Gremplewicz K., Nowak D. The Role of Apelin in Cardiovascular Diseases, Obesity and Cancer. Front Physiol. 2018;(9):557. doi: 10.3389/fphys.2018.00557.

19. Luo H., Gu X., Tong G., Han L. Research progress of apelin in acute ischemic brain injury. Am J Transl Res. 2022;14(10):7260-7267.

20. Chouliaras G., Panayotou I., Margoni D. et al. Circulating leptin and adiponectin and their relation to glucose metabolism in children with Crohn’s disease and ulcerative colitis. Pediatr Res. 2013;74(4):40-46. doi: 10.1038/pr.2013.114.

21. Yadav D.P., Kedia S., Madhusudhan K.S. et al. Body Composition in Crohn’s Disease and Ulcerative Colitis: Correlation with Disease Severity and Duration. Can J Gastroenterol Hepatol. 2017;(2017):1215035. doi: 10.1155/2017/1215035.

22. Belik E.V., Gruzdeva O.V., Palicheva E.I. Insulin and leptin: disputable and unsolved questions of their interaction. Ateroscleroz. 2019;15(1):49-57. (In Russ.) doi: 10.15372/ATER20190107.@@ Белик Е.В., Груздева О.В., Паличева Е.И. Инсулин и лептин: спорные и нерешенные вопросы их взаимодействия. Атеросклероз. 2019;15(1):49-57. doi: 10.15372/ATER20190107.

23. Pereira S., Cline D.L., Glavas M.M. et al. Tissue-Specific Effects of Leptin on Glucose and Lipid Metabolism. Endocr. Rev. 2021; 42(1):1-28. doi: 10.1210/endrev/bnaa027.

24. Martelli D., Brooks V.L. Leptin Increases: Physiological Roles in the Control of Sympathetic Nerve Activity, Energy Balance, and the Hypothalamic-Pituitary-Thyroid Axis.Int J Mol Sci. 2023;24(3):2684. doi: 10.3390/ijms24032684.

25. Paz-Filho G., Mastronardi C., Franco C.B. et al. Leptin: molecular mechanisms, systemic pro-inflammatory effects, and clinical implications. Arq Bras Endocrinol Metabol. 2012;56(9):597-607. doi: 10.1590/s0004-27302012000900001.

26. Kiernan K., MacIver N.J. The Role of the Adipokine Leptin in Immune Cell Function in Health and Disease. Front Immunol. 2021;(11):622468. doi: 10.3389/fimmu.2020.622468.

27. Mohamadinarab M., Ahmadi R., Gholamrezayi A. et al. Serum levels of C1q/TNF-related protein-3 in inflammatory bowel disease patients and its inverse association with inflammatory cytokines and insulin resistance. IUBMB Life. 2020;72(8):1698-1704. doi: 10.1002/iub.2293.

28. Bendet N., Scapa E, Cohen O. et al. Enhanced glucose-dependent glucagon-like peptide-1 and insulin secretion in Crohn patients with terminal ileum disease is unrelated to disease activity or ileal resection. Scand J Gastroenterol. 2004;39(7):650-656. doi: 10.1080/00365520410004839.

29. He S., Li J., Yao Z. et al. Insulin alleviates murine colitis through microbiome alterations and bile acid metabolism. J Transl Med. 2023;21(1):498. doi: 10.1186/s12967-023-04214-3.

30. Chen H., Han T., Gao L, Zhang D. The Involvement of Glial Cell-Derived Neurotrophic Factor in Inflammatory Bowel Disease. J Interferon Cytokine Res. 2022;42(1):1-7. doi: 10.1089/jir.2021.0116.

31. Skaper S.D. Nerve growth factor: a neuroimmune crosstalk mediator for all seasons. Immunology. 2017;151(1):1-15. doi: 10.1111/imm.12717.

32. Kawasaki H., Goda M., Fukuhara S. et al. Nerve growth factor (NGF) has an anti-tumor effects through perivascular innervation of neovessels in HT1080 fibrosarcoma and HepG2 hepatitis tumor in nude mice. J Pharmacol Sci. 2019;140(1):1-7. doi: 10.1016/j.jphs.2019.02.011.

33. Zhang X., Hu C., Yuan XP. et al. Osteocrin, a novel myokine, prevents diabetic cardiomyopathy via restoring proteasomal activity. Cell Death Dis. 2021;(12): 624. doi: 10.1038/s41419-021-03922-2.

34. Ferro J.M., Oliveira S.N., Correia L. Neurologic manifestations of inflammatory bowel diseases. Handb Clin Neurol. 2014;(120):595-605. doi: 10.1016/B978-0-7020-4087-0.00040-1.

35. van Bodegraven A.A., Bravenboer N. Perspective on skeletal health in inflammatory bowel disease. Osteoporos Int. 2020;31(4):637-646. doi: 10.1007/s00198-019-05234-w.

36. Luo H., Gu X., Tong G., Han L. Research progress of apelin in acute ischemic brain injury. Am J Transl Res. 2022;14(10):7260-7267.

37. Girault-Sotias P.E., Gerbier R., Flahault A. et al. Apelin and Vasopressin: The Yin and Yang of Water Balance. Front Endocrinol (Lausanne). 2021;(12): 735515. doi: 10.3389/fendo.2021.735515.

38. Bełtowski J. Apelin and visfatin: unique “beneficial” adipokines upregulated in obesity? Med Sci Monit. 2006;12(6): RA112-9. PMID: 16733497.

39. Melincovici C.S., Boşca A.B., Şuşman S. et al. Vascular endothelial growth factor (VEGF) - key factor in normal and pathological angiogenesis. Rom J Morphol Embryol. 2018;59(2):455-467. PMID: 30173249.

40. Hecking I., Stegemann L.N., Theis V. et al. Neuroprotective Effects of VEGF in the Enteric Nervous System.Int J Mol Sci. 2022;23(12):6756. doi: 10.3390/ijms23126756.

41. Salven P., Hattori K., Heissig B., Rafii S.Interleukin-1alpha promotes angiogenesis in vivo via VEGFR-2 pathway by inducing inflammatory cell VEGF synthesis and secretion. FASEB J. 2002;16(11):1471-1473. doi: 10.1096/fj.02-0134fje.


Review

For citations:


Shestopalov A.V., Davydov V.V., Merkel K.P., Abdulkhakov S.R., Shakirova G.F., Odintsova A.K., Abdulkhakov R.A., Grigoryeva T.V., Laikov A.V., Sorokin V.A., Ivanova A.A., Roumiantsev S.A. Endocrine function of adipose, muscle, nervous and bone tissue in patients with ulcerative colitis. Experimental and Clinical Gastroenterology. 2024;(11):60-69. (In Russ.) https://doi.org/10.31146/1682-8658-ecg-231-11-60-69

Views: 28


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1682-8658 (Print)