Фенотипическое разнообразие муковисцидоза: патогенез и модифицирующие факторы
https://doi.org/10.31146/1682-8658-ecg-233-1-125-136
Аннотация
Ключевые слова
Об авторах
Д. О. МокроусоваРоссия
А. С. Ефремова
Россия
Н. Ю. Каширская
Россия
А. И. Хавкин
Россия
Д. В. Гольдштейн
Россия
Список литературы
1. Tsui L. The Cystic Fibrosis Transmembrane Conductance Regulator Gene. Am J Respir Crit Care Med. 1995;151: S47-53. doi: 10.1164/ajrccm/151.3_Pt_2.S47.
2. Liu F., Zhang Z., Csanády L., Gadsby D.C., Chen J. Molecular Structure of the Human CFTR Ion Channel. Cell. 2017;169:85-95.e8. doi: 10.1016/j.cell.2017.02.024.
3. Ratjen F., Bell S.C., Rowe S.M., Goss C.H., Quittner A.L., Bush A. Cystic fibrosis. Nat Rev Dis Primers. 2015;1. doi: 10.1038/NRDP.2015.10.
4. Butnariu LI, Țarcă E, Cojocaru E, Rusu C, Moisă Ștefana M, Constantin MML, et al. Genetic Modifying Factors of Cystic Fibrosis Phenotype: A Challenge for Modern Medicine. J Clin Med 2021;10:5821. doi: 10.3390/JCM10245821
5. CFTR CF transmembrane conductance regulator [Homo sapiens (human)] - Gene - NCBI n. d. https://www.ncbi.nlm.nih.gov/gene/1080.
6. CFTR - Cystic fibrosis transmembrane conductance regulator - Homo sapiens (Human) | UniProtKB | UniProt n. d. https://www.uniprot.org/uniprotkb/P13569/entry.
7. Csanády L., Vergani P., Gadsby D.C. Structure, gating, and regulation of the CFTR anion channel. Physiol Rev. 2019;99:707-38. doi: 10.1152/physrev.00007.2018.
8. Zhang Z., Liu F., Chen J. Molecular structure of the ATP-bound, phosphorylated human CFTR. Proc Natl Acad Sci U S A. 2018;115:12757-62. doi: 10.1073/pnas.1815287115.
9. Vergani P., Lockless S.W., Nairn A.C., Gadsby D.C. CFTR channel opening by ATP-driven tight dimerization of its nucleotide-binding domains. Nature. 2005;433:876. doi: 10.1038/nature03313.
10. Riordan J.R. CFTR function and prospects for therapy. Annu Rev Biochem. 2008;77:701-26. doi: 10.1146/annurev.biochem.75.103004.142532.
11. The Clinical and Functional TRanslation of CFTR (CFTR2); available at: http://cftr2.org
12. Cystic Fibrosis Mutation Database: Statistics n. d. available at: http://www.genet.sickkids.on.ca/cftr/StatisticsPage.html
13. De Boeck K., Amaral M.D. Progress in therapies for cystic fibrosis. Lancet Respir Med. 2016;4:662-74. doi: 10.1016/S2213-2600(16)00023-0.
14. Kondratyeva E.I., Melyanovskaya Yu.L., Sherman V.D., De Jonge H.R., Efremova A.S., Bukharova T.B., Goldshtein D.V., Zod’binova A.E. Functional methods of diagnosing disorders of the CFTR gene and its product. Vopr. prakt. pediatr. (Clinical Practice in Pediatrics). 2018; 13(4): 50-64. (In Russ.). doi: 10.20953/1817-7646-2018-4-50-64.@@ Кондратьева Е.И., Мельяновская Ю.Л., Шерман В.Д., Хьюго Р. де Йонге, Ефремова А.С., Бухарова Т.Б., et al. Функциональные методы диагностики нарушений гена CFTR и его продукта. Вопросы Практической Педиатрии 2018;13:50-64. doi: 10.20953/1817-7646-2018-4-50-64.
15. Krasnova M., Efremova A., Bukhonin A. et al. The Effect of Complex Alleles of the CFTR Gene on the Clinical Manifestations of Cystic Fibrosis and the Effectiveness of Targeted Therapy.Int J Mol Sci. 2024;25:114. doi: 10.3390/IJMS25010114.
16. Kondratyeva E.I., Kashirskaya N.Y., Kapranov N.I. National consensus “Cystic fibrosis: definition, diagnostic criteria, therapy”. 2nd ed. Moscow: BORGES Company; 2018. 356 p. (in Russ.)@@ Кондратьева Е.И., Каширская Н.Ю., Капранов Н.И. Национальный консенсус «Муковисцидоз: определение, диагностические критерии, терапия». 2-е изд. Москва: Компания БОРГЕС; 2018. 356 с.
17. Kapnadak S.G., Dimango E., Hadjiliadis D. et al. Cystic Fibrosis Foundation consensus guidelines for the care of individuals with advanced cystic fibrosis lung disease. Journal of Cystic Fibrosis. 2020;19:344-54. doi: 10.1016/j.jcf.2020.02.015.
18. Button B., Cai L.H., Ehre C., Kesimer M., Hill D.B., Sheehan J.K. et al. Periciliary Brush Promotes the Lung Health by Separating the Mucus Layer from Airway Epithelia. Science. 2012;337:937. doi: 10.1126/science.1223012.
19. Atanasova K.R., Reznikov L.R. Strategies for measuring airway mucus and mucins. Respir Res 2019;20. doi: 10.1186/s12931-019-1239-z.
20. Fahy J.V., Dickey B.F. Airway Mucus Function and Dysfunction. N Engl J Med. 2010;363:2233. doi: 10.1056/nejmra0910061.
21. Zajac M., Dreano E., Edwards A., Planelles G., Sermet-gaudelus I. Airway Surface Liquid pH Regulation in Airway Epithelium Current Understandings and Gaps in Knowledge.International Journal of Molecular Sciences. 2021, Vol. 22, Page 3384 2021;22:3384. doi: 10.3390/ijms22073384.
22. Webster M.J., Tarran R. Slippery When Wet: Airway Surface Liquid Homeostasis and Mucus Hydration. Curr Top Membr. 2018;81:293-335. doi: 10.1016/bs.ctm.2018.08.004.
23. Saint-Criq V., Gray M.A. Role of CFTR in epithelial physiology. Cellular and Molecular Life Sciences. 2016 74:1 2016;74:93-115. doi: 10.1007/s00018-016-2391-y.
24. Hanssens L.S., Duchateau J., Casimir G.J. CFTR Protein: Not Just a Chloride Channel? Cells. 2021;10. doi: 10.3390/cells10112844.
25. Kim C.S., Ahmad S., Wu T., Walton W.G., Redinbo M.R., Tarran R. SPLUNC1 is an allosteric modulator of the epithelial sodium channel. The FASEB Journal. 2018;32:2478. doi: 10.1096/fj.201701126r.
26. Garcia-Caballero A., Rasmussen J.E., Gaillard E., Watson M.J., Olsen J.C., Donaldson S.H. et al. SPLUNC1 regulates airway surface liquid volume by protecting ENaC from proteolytic cleavage. Proc Natl Acad Sci U S A. 2009;106:11412. doi: 10.1073/pnas.0903609106.
27. Boucher R.C. Airway surface dehydration in cystic fibrosis: Pathogenesis and therapy. Annu Rev Med. 2007;58:157-70. doi: 10.1146/annurev.med.58.071905.105316.
28. Birket S.E., Chu K.K., Liu L., Houser G.H., Diephuis B.J., Wilsterman E.J. et al. A functional anatomic defect of the cystic fibrosis airway. Am J Respir Crit Care Med. 2014;190:421-32. doi: 10.1164/rccm.201404-0670OC.
29. Quinton P.M. Role of epithelial HCO3- transport in mucin secretion: lessons from cystic fibrosis. Am J Physiol Cell Physiol. 2010;299: C1222. doi: 10.1152/ajpcell.00362.2010.
30. Pezzulo A.A., Tang X.X., Hoegger M.J. et al. Reduced Airway Surface pH Impairs Bacterial Killing in the Porcine Cystic Fibrosis Lung. Nature. 2012;487:109. doi: 10.1038/nature11130.
31. Ahmad S., Gilmore R.C., Alexis N.E., Tarran R. SPLUNC1 loses its antimicrobial activity in acidic cystic fibrosis airway secretions. Am J Respir Crit Care Med. 2019;200:633-6. doi: 10.1164/rccm.201812-2303le.
32. Garland A.L., Walton W.G., Coakley R.D. et al. Molecular basis for pH-dependent mucosal dehydration in cystic fibrosis airways. Proc Natl Acad Sci U S A. 2013;110:15973-8. doi: 10.1073/pnas.1311999110.
33. Thibodeau P.H., Butterworth M.B. Proteases, cystic fibrosis and the epithelial sodium channel (ENaC). Cell Tissue Res. 2013;351:309. doi: 10.1007/S00441-012-1439-Z.
34. Linsdell P., Hanrahan J.W. Glutathione permeability of CFTR. Am J Physiol Cell Physiol. 1998;275. doi: 10.1152/ajpcell.1998.275.1.C323.
35. Roum J.H., Buhl R., McElvaney N.G., Borok Z., Crystal R.G. Systemic deficiency of glutathione in cystic fibrosis. J Appl Physiol. (1985). 1993 Dec;75(6):2419-24. doi: 10.1152/jappl.1993.75.6.2419.
36. Cantin A.M., Hartl D., Konstan M.W., Chmiel J.F. Inflammation in cystic fibrosis lung disease: Pathogenesis and therapy. Journal of Cystic Fibrosis. 2015;14:419-30. doi: 10.1016/J.JCF.2015.03.003.
37. Gaggar A., Hector A., Bratcher P.E., Mall M.A., Griese M., Hartl D. The role of matrix metalloproteases in cystic fibrosis lung disease. Eur Respir J. 2011;38:721. doi: 10.1183/09031936.00173210.
38. Turcios N.L. Cystic Fibrosis Lung Disease: An Overview. Respir Care. 2020;65:233-51. doi: 10.4187/RESPCARE.06697.
39. Singh V.K., Schwarzenberg S.J. Pancreatic insufficiency in Cystic Fibrosis. Journal of Cystic Fibrosis. 2017;16: S70-8. doi: 10.1016/j.jcf.2017.06.011.
40. Pallagi P., Hegyi P., Rakonczay Z. The physiology and pathophysiology of pancreatic ductal secretion the background for clinicians. Pancreas. 2015;44:1211-33. doi: 10.1097/MPA.0000000000000421.
41. Lee M.G., Ohana E., Park H.W., Yang D., Muallem S. Molecular Mechanism of Pancreatic and Salivary Glands Fluid and HCO3- Secretion. Physiol Rev. 2012;92:39. doi: 10.1152/PHYSREV.00011.2011.
42. Angyal D., Bijvelds M.J.C., Bruno M.J., Peppelenbosch M.P., de Jonge H.R. Bicarbonate Transport in Cystic Fibrosis and Pancreatitis. Cells 2021;11:54. doi: 10.3390/cells11010054.
43. Xu H., Ghishan F.K., Kiela P.R. SLC9 Gene Family: Function, Expression, and Regulation.Compr Physiol. 2018;8:555. doi: 10.1002/CPHY.C170027.
44. Ishiguro H., Yamamoto A., Nakakuki M., Yi L., Ishiguro M., Yamaguchi M. et al. Physiology and pathophysiology of bicarbonate secretion by pancreatic duct epithelium. Nagoya J Med Sci. 2012 Feb;74(1-2):1-18.
45. Ko S.B.H., Zeng W., Dorwart M.R., Luo X., Kim K.H., Millen L. et al. Gating of CFTR by the STAS domain of SLC26 transporters. Nature Cell Biology. 2004 6:4 2004;6:343-50. doi: 10.1038/ncb1115.
46. Greeley T., Shumaker H., Wang Z., Schweinfest C.W., Soleimani M. Downregulated in adenoma and putative anion transporter are regulated by CFTR in cultured pancreatic duct cells. Am J Physiol Gastrointest Liver Physiol. 2001;281. doi: 10.1152/ajpgi.2001.281.5.G1301.
47. Steward M.C., Ishiguro H., Case R.M. Mechanisms of bicarbonate secretion in the pancreatic duct. Annu Rev Physiol. 2005;67:377-409. doi: 10.1146/ANNUREV.PHYSIOL.67.031103.153247.
48. Jung J., Nam J.H., Park H.W., Oh U., Yoon J.H., Lee M.G. Dynamic modulation of ANO1/TMEM16A HCO3- permeability by Ca2+/calmodulin. Proc Natl Acad Sci U S A. 2013;110:360-5. doi: 10.1073/pnas.1211594110.
49. Novak I., Haanes K.A., Wang J. Acid-base transport in pancreas-new challenges. Front Physiol. 2013;4. doi: 10.3389/FPHYS.2013.00380.
50. O’Shea D., O’Connell J. Cystic fibrosis related diabetes. Curr Diab Rep. 2014;14:1-10. doi: 10.1007/s11892-014-0511-3.
51. Baker L.B., Wolfe A.S. Physiological mechanisms determining eccrine sweat composition. European Journal of Applied Physiology. 2020 120:4 2020;120:719-52. doi: 10.1007/S00421-020-04323-7.
52. Baker LB. Physiology of sweat gland function: The roles of sweating and sweat composition in human health. Temperature: Multidisciplinary Biomedical Journal. 2019;6:211. doi: 10.1080/23328940.2019.1632145.
53. Cui C.Y., Schlessinger D. Eccrine sweat gland development and sweat secretion. Exp Dermatol. 2015;24:644-50. doi: 10.1111/EXD.12773.
54. Reddy M.M. Fundamentals of Ion Transport Across Human Sweat Gland in Health and Disease. 2020:143-75. doi: 10.1007/978-3-030-55310-4_5.
55. Carlyle B.E., Borowitz D.S., Glick P.L. A review of pathophysiology and management of fetuses and neonates with meconium ileus for the pediatric surgeon. J Pediatr Surg. 2012;47:772-81. doi: 10.1016/j.jpedsurg.2012.02.019.
56. Krasovskiy S.A., Adyan T.A., Amelina E.L.et al. Cystic Fibrosis: Some Issues of Epidemiology and Genetics. Practical Pulmonology. 2019;(4):45-50. (in Russ.)@@ Красовский С.А. и др. Муковисцидоз: некоторые вопросы эпидемиологии и генетики. Практическая пульмонология. 2019;(4):45-50.
57. Scotet V., L’hostis C., Férec C. The Changing Epidemiology of Cystic Fibrosis: Incidence, Survival and Impact of the CFTR Gene Discovery. Genes (Basel). 2020;11. doi: 10.3390/GENES11060589.
58. Krasovsky S.A., Starinova M.A., Voronkova A.Y., Amelina E.L., Kashirskaya N.Y., Kondratieva E.I., Nazarenko L.P. Register of patients with cystic fibrosis in the Russian Federation. 2021. St. Petersburg: Charitable Foundation “Ostrova”; 2023. 81 p. (in Russ.)@@ Красовский С.А., Старинова М.А., Воронкова А.Ю., Амелина Е.Л., Каширская Н.Ю., Кондратьева Е.И., Назаренко Л.П. Регистр пациентов с муковисцидозом в Российской Федерации. 2021 год. СПб.: Благотворительный фонд «Острова»; 2023. 81 с.
59. O’Neal W.K., Knowles M.R. Cystic fibrosis disease modifiers: Complex genetics defines the phenotypic diversity in a monogenic disease. Annu Rev Genomics Hum Genet. 2018;19:201-22. doi: 10.1146/annurev-genom-083117-021329.
60. Marson F.A.L., Bertuzzo C.S., Ribeiro A.F., Ribeiro J.D. Polymorphisms in ADRB2 gene can modulate the response to bronchodilators and the severity of cystic fibrosis. BMC. Pulm Med. 2012;12. doi: 10.1186/1471-2466-12-50.
61. Beucher J., Boëlle P.Y., Busson P.F., Muselet-Charlier C., Clement A., Corvol H. AGER -429T/C Is Associated with an Increased Lung Disease Severity in Cystic Fibrosis. PLoS One. 2012;7: e41913. doi: 10.1371/JOURNAL.PONE.0041913.
62. Wright F.A., Strug L.J., Doshi V.K., Commander C.W., Blackman S.M., Sun L. et al. Genome-wide association and linkage identify modifier loci of lung disease severity in cystic fibrosis at 11p13 and 20q13.2. Nature Genetics. 2011 43:6 2011;43:539-46. doi: 10.1038/ng.838.
63. Martin A.C., Laing I.A., Zhang G., Brennan S., Winfield K., Sly P.D. et al. CD14 C-159T and early infection with Pseudomonas aeruginosa in children with cystic fibrosis. Respir Res. 2005;6:63. doi: 10.1186/1465-9921-6-63.
64. Kormann M.S.D., Hector A., Marcos V., Mays L.E., Kappler M., Illig T. et al. CXCR1 and CXCR2 haplotypes synergistically modulate cystic fibrosis lung disease. European Respiratory Journal. 2012;39:1385-90. doi: 10.1183/09031936.00130011.
65. Emond M.J., Louie T., Emerson J. et al. Exome sequencing of extreme phenotypes identifies DCTN4 as a modifier of chronic Pseudomonas aeruginosa infection in cystic fibrosis. Nature Genetics. 2012 44:8 2012;44:886-9. doi: 10.1038/ng.2344.
66. Darrah R., McKone E., O’Connor C. et al. EDNRA variants associate with smooth muscle mRNA levels, cell proliferation rates, and cystic fibrosis pulmonary disease severity. Physiol Genomics. 2010;41:71-7. doi: 10.1152/PHYSIOLGENOMICS.00185.2009.
67. Corvol H., Nathan N., Charlier C. et al. Glucocorticoid receptor gene polymorphisms associated with progression of lung disease in young patients with cystic fibrosis. Respir Res. 2007;8. doi: 10.1186/1465-9921-8-88.
68. Gu Y., Harley I.T.W., Henderson L.B. et al. IFRD1 polymorphisms in cystic fibrosis with potential link to altered neutrophil function. Nature. 2009;458:1039. doi: 10.1038/NATURE07811.
69. Levy H., Murphy A., Zou F. et al. IL1B polymorphisms modulate cystic fibrosis lung disease. Pediatr Pulmonol. 2009;44:580-93. doi: 10.1002/PPUL.21026.
70. Hillian A.D., Londono D., Dunn J.M. et al. Modulation of cystic fibrosis lung disease by variants in interleukin-8. Genes Immun. 2008;9:501. doi: 10.1038/GENE.2008.42.
71. Tesse R., Cardinale F., Santostasi T. et al. Association of interleukin-10 gene haplotypes with Pseudomonas aeruginosa airway colonization in cystic fibrosis. J Cyst Fibros. 2008;7:329-32. doi: 10.1016/J.JCF.2007.11.004.
72. Stanke F., Hedtfeld S., Becker T., Tümmler B. An association study on contrasting cystic fibrosis endophenotypes recognizes KRT8 but not KRT18 as a modifier of cystic fibrosis disease severity and CFTR mediated residual chloride secretion. BMC Med Genet. 2011;12:62. doi: 10.1186/1471-2350-12-62.
73. Chalmers J.D., Fleming G.B., Hill A.T., Kilpatrick D.C. Impact of mannose-binding lectin insufficiency on the course of cystic fibrosis: A review and meta-analysis. Glycobiology. 2011;21:271-82. doi: 10.1093/GLYCOB/CWQ161.
74. Plant B.J., Gallagher C.G., Bucala R. et al. Cystic fibrosis, disease severity, and a macrophage migration inhibitory factor polymorphism. Am J Respir Crit Care Med. 2005;172:1412-5. doi: 10.1164/RCCM.200412-1714OC.
75. Guo X.L., Pace R.G., Stonebraker J.R. et al. Mucin Variable Number Tandem Repeat Polymorphisms and Severity of Cystic Fibrosis Lung Disease: Significant Association with MUC5AC. PLoS One, 2011;6: e25452. doi: 10.1371/JOURNAL.PONE.0025452.
76. Texereau J., Marullo S., Hubert D. et al. Nitric oxide synthase 1 as a potential modifier gene of decline in lung function in patients with cystic fibrosis. Thorax. 2004;59:156-8. doi: 10.1136/THORAX.2003.006718.
77. Grasemann H., Van’s Gravesande K.S., Büscher R. et al. Endothelial Nitric Oxide Synthase Variants in Cystic Fibrosis Lung Disease. doi: 101164/Rccm200202-155OC 2012;167:390-4.
78. Grasemann H., Knauer N., Büscher R., Hübner K., Drazen J.M., Ratjen F. Airway nitric oxide levels in cystic fibrosis patients are related to a polymorphism in the neuronal nitric oxide synthase gene. Am J Respir Crit Care Med. 2000;162:2172-6. doi: 10.1164/AJRCCM.162.6.2003106.
79. Dorfman R., Taylor C., Lin F., Sun L. et al. Modulatory effect of the SLC9A3 gene on susceptibility to infections and pulmonary function in children with cystic fibrosis. Pediatr Pulmonol. 2011;46:385-92. doi: 10.1002/PPUL.21372.
80. Li W., Soave D., Miller M.R., Keenan K., Lin F., Gong J. et al. Unraveling the complex genetic model for cystic fibrosis: Pleiotropic effects of modifier genes on early cystic fibrosis-related morbidities. Hum Genet. 2014;133:151-61. doi: 10.1007/s00439-013-1363-7.
81. Trojan T., Alejandre Alcazar M.A., Fink G. et al. The effect of TGF-β1 polymorphisms on pulmonary disease progression in patients with cystic fibrosis. BMC Pulm Med. 2022;22:1-10. doi: 10.1186/s12890-022-01977-1.
82. Yarden J., Radojkovic D., De Boeck K., Macek M. et al. Association of tumour necrosis factor alpha variants with the CF pulmonary phenotype. Thorax. 2005;60:320. doi: 10.1136/THX.2004.025262.
83. Derbel S., Doumaguet C., Hubert D., Mosnier-Pudar H. et al. Calpain 10 and development of diabetes mellitus in cystic fibrosis. Journal of Cystic Fibrosis. 2006;5:47-51. doi: 10.1016/J.JCF.2005.09.011.
84. Blackman S.M., Commander C.W., Watson C. et al. Genetic modifiers of cystic fibrosis-related diabetes. Diabetes. 2013;62:3627-35. doi: 10.2337/db13-0510.
85. Aksit M.A., Pace R.G., Vecchio-Pagán B. et al. Genetic Modifiers of Cystic Fibrosis-Related Diabetes Have Extensive Overlap With Type 2 Diabetes and Related Traits. J Clin Endocrinol Metab. 2019;105:1401. doi: 10.1210/CLINEM/DGZ102.
86. Blackman S.M., Hsu S., Ritter S.E. et al. A susceptibility gene for type 2 diabetes confers substantial risk for diabetes complicating cystic fibrosis. Diabetologia. 2009;52:1858. doi: 10.1007/S00125-009-1436-2.
87. Bartlett J.R., Friedman K.J., Ling S.C. et al. Genetic modifiers of liver disease in cystic fibrosis. JAMA: The Journal of the American Medical Association. 2009;302:1076. doi: 10.1001/JAMA.2009.1295.
88. Dorfman R., Li W., Sun L. et al. Modifier gene study of meconium ileus in cystic fibrosis: statistical considerations and gene mapping results. Hum Genet. 2009;126:763. doi: 10.1007/S00439-009-0724-8.
89. Gong J., Wang F., Xiao B. et al. Genetic association and transcriptome integration identify contributing genes and tissues at cystic fibrosis modifier loci. PLoS Genet. 2019;15: e1008007. doi: 10.1371/JOURNAL.PGEN.1008007.
90. Henderson L.B., Doshi V.K., Blackman S.M. et al. Variation in MSRA Modifies Risk of Neonatal Intestinal Obstruction in Cystic Fibrosis. PLoS Genet. 2012;8: e1002580. doi: 10.1371/JOURNAL.PGEN.1002580.
91. Sun L., Rommens J.M., Corvol H. et al. Multiple apical plasma membrane constituents are associated with susceptibility to meconium ileus in individuals with cystic fibrosis. Nat Genet. 2012;44:562. doi: 10.1038/NG.2221.
Рецензия
Для цитирования:
Мокроусова Д.О., Ефремова А.С., Каширская Н.Ю., Хавкин А.И., Гольдштейн Д.В. Фенотипическое разнообразие муковисцидоза: патогенез и модифицирующие факторы. Экспериментальная и клиническая гастроэнтерология. 2025;(1):125-136. https://doi.org/10.31146/1682-8658-ecg-233-1-125-136
For citation:
Mokrousova D.O., Efremova A.S., Kashirskaya N.Yu., Khavkin A.I., Goldshtein D.V. Phenotypic diversity of cystic fibrosis:pathogenesis and modifying factors. Experimental and Clinical Gastroenterology. 2025;(1):125-136. (In Russ.) https://doi.org/10.31146/1682-8658-ecg-233-1-125-136