Preview

Экспериментальная и клиническая гастроэнтерология

Расширенный поиск

Коррекция липидного обмена статинами и пробиотиками

https://doi.org/10.31146/1682-8658-ecg-229-9-161-174

Аннотация

Микробиоту кишечника можно рассматривать как новый «метаболический орган», участвующий в регуляции метаболизма. В случае дисбактериоза кишечника изменения концентрации определенных бактериальных метаболитов могут выступать в качестве триггеров для развития нарушений метаболизма и липидного обмена. Например, более низкие уровни бактерий, продуцирующих короткоцепочечные жирные кислоты (КЦЖК), нарушения энтерогепатической циркуляции желчных кислот, повышенные уровни кишечных бактерий, продуцирующих триметиламин (ТМА), играют важную роль в дислипидемии. Несомненно, существуют взаимодействия между использованием статинов и изменениями в микробиоте кишечника. В статье представлен анализ литературных данных и результаты собственных исследований относительно влияния статинов и пробиотиков на липидный обмен и микробиоту. Учитывая положительное влияние некоторых пробиотиков на липидный обмен, их способность противодействовать слабовыраженному воспалению, иммуномодулирующую роль и полезное влияние на пищеварительную систему, сочетание статинов со специфическими пробиотическими агентами представляется логичным подходом. Аутопробиотики (местные апатогенные полезные штаммы) являются методом персонализированной терапии. Они демонстрируют многообещающие результаты в лечении нарушений липидного обмена. Мы подчеркиваем, что аутопробиотики могут быть предпочтительнее пробиотиков из-за их безопасности и более длительного эффекта в случае персонализированной терапии нарушений липидного обмена. Однако необходимы дальнейшие исследования для более глубокого понимания основных механизмов взаимодействия организма и его микробиоты, в том числе во время терапии статинами, пробиотиками и аутопробиотиками у пациентов с метаболическим синдромом. в влияниях и решении оставшихся вопросов в этой области.

Об авторах

Н. В. Барышникова
Научно-образовательный центр «Молекулярные основы взаимодействия микроорганизмов и человека» НЦМУ «Центр персонализированной медицины» ФГБНУ «Институт экспериментальной медицины»; ФГБОУ ВО «Первый Санкт-Петербургский государственный медицинский университет им. академика И.П. Павлова» Министерства здравоохранения Российской Федерации; Федеральное государственное бюджетное образовательное учреждение высшего образования «Санкт-Петербургский государственный педиатрический медицинский университет» Министерства здравоохранения Российской Федерации
Россия


В. М. Льнявина
Городская поликлиника № 60
Россия


Ю. П. Успенский
ФГБОУ ВО «Первый Санкт-Петербургский государственный медицинский университет им. академика И.П. Павлова» Министерства здравоохранения Российской Федерации; Федеральное государственное бюджетное образовательное учреждение высшего образования «Санкт-Петербургский государственный педиатрический медицинский университет» Министерства здравоохранения Российской Федерации
Россия


А. Н. Суворов
Научно-образовательный центр «Молекулярные основы взаимодействия микроорганизмов и человека» НЦМУ «Центр персонализированной медицины» ФГБНУ «Институт экспериментальной медицины»
Россия


Е. И. Ермоленко
Научно-образовательный центр «Молекулярные основы взаимодействия микроорганизмов и человека» НЦМУ «Центр персонализированной медицины» ФГБНУ «Институт экспериментальной медицины»
Россия


Список литературы

1. Schoeler M., Caesar R. Dietary lipids, gut microbiota and lipid metabolism. Rev Endocr Metab Disord. 2019, 20(4):461-472. doi: 10.1007/s11154-019-09512-0.

2. Sun C., Wang Z., Hu L., Zhang X., Chen J., Yu Z., Liu L., Wu M. Targets of statins intervention in LDL-C metabolism: Gut microbiota. Front Cardiovasc Med. 2022;9:972603. doi: 10.3389/fcvm.2022.972603.

3. Albillos A., de Gottardi A., Rescigno M. The gut-liver axis in liver disease: Pathophysiological basis for therapy. J Hepatol. 2020, 72:558-77. doi: 10.1016/j.jhep.2019.10.003

4. Martinez K.B., Leone V., Chang E.B. Western diets, gut dysbiosis, and metabolic diseases: are they linked? Gut Microbes. 2017, 8:130-42. doi: 10.1080/ 19490976.2016.1270811l.

5. Sonnenburg J.L., Bäckhed F. Diet-microbiota interactions as moderators of human metabolism. Nature. 2016, 535:56-64. doi: 10.1038/nature 18846.

6. Rebolledo C., Cuevas A., Zambrano T. et al. Bacterial Community Profile of the Gut Microbiota Differs between Hypercholesterolemic Subjects and Controls. Biomed Res Int. 2017;2017:8127814. doi: 10.1155/2017/8127814.

7. Alferova L.S., Ermolenko E.I., Chernikova A.T. et al. Autoprobiotic enterococci as a component of metabolic syndrome complex therapy.Russian Journal for Personalized Medicine. 2022;2(6):98-114. (In Russ.) doi: 10.18705/2782-3806-2022-2-6-98-114.

8. Liu Y., Song X., Zhou H., Zhou X., Xia Y., Dong X., Zhong W., Tang S., Wang L., Wen S., Xiao J., Tang L. Gut Microbiome Associates With Lipid-Lowering Effect of Rosuvastatin in Vivo. Front Microbiol. 2018 Mar 22;9:530. doi: 10.3389/fmicb.2018.00530.

9. Drapkina O.M., Shirobokikh O.E. Role of Gut Microbiota in the Pathogenesis of Cardiovascular Diseases and Metabolic Syndrome. Rational Pharmacotherapy in Cardiology. 2018;14(4):567-574. (In Russ.) doi: 10.20996/1819-6446-2018-14-4-567-574.

10. Kimura I., Ozawa K., Inoue D. et al. The gut microbiota suppresses insulin-mediated fat accumulation via the short-chain fatty acid receptor GPR43. Nat Commun. 2013;4:1829. doi: 10.1038/ncomms2852.

11. Kumar P.S., Mason M.R., Brooker M.R., O’Brien K. Pyrosequencing reveals unique microbial signatures associated with healthy and failing dental implants. J Clin Periodontol. 2012;39(5):425-33. doi: 10.1111/j.1600-051X.2012.01856.x.

12. Lefebvre P., Cariou B., Lien F., Kuipers F., Staels B. Role of bile acids and bile acid receptors in metabolic regulation. Physiol Rev. 2009;89(1):147-91. doi: 10.1152/physrev.00010.2008.

13. Schoeler M., Caesar R. Dietary lipids, gut microbiota and lipid metabolism. Rev Endocr Metab Disord. 2019;20(4):461-472. doi: 10.1007/s11154-019-09512-0.

14. Zhu Y., Li Q., Jiang H. Gut microbiota in atherosclerosis: focus on trimethylamine N-oxide. APMIS. 2020;128(5):353-366. doi: 10.1111/apm.13038.

15. Bennett B.J., de Aguiar Vallim T.Q., Wang Z. et al. Trimethylamine-N-oxide, a metabolite associated with atherosclerosis, exhibits complex genetic and dietary regulation. Cell Metab. 2013;17(1):49-60. doi: 10.1016/j.cmet.2012.12.011.

16. He X., Zheng N., He J., Liu C., Feng J., Jia W., Li H. Gut Microbiota Modulation Attenuated the Hypolipidemic Effect of Simvastatin in High-Fat/Cholesterol-Diet Fed Mice. J Proteome Res. 2017;16(5):1900-1910. doi: 10.1021/acs.jproteome.6b00984.

17. Yoo D.H., Kim I.S., Van Le T.K., Jung I.H., Yoo H.H., Kim D.H. Gut microbiota-mediated drug interactions between lovastatin and antibiotics. Drug Metab Dispos. 2014;42(9):1508-13. doi: 10.1124/dmd.114.058354.

18. Samsonova N.G., Zvenigorodskaia L.A., Cherkashova E.A., Lazebnik L.B. [Intestinal dysbiosis and atherogenic dyslipidemia]. Eksp Klin Gastroenterol. 2010;(3):88-94. (in Russ.) PMID: 20499450.

19. Adak A., Khan M.R. An insight into gut microbiota and its functionalities. Cell Mol Life Sci. 2019, 76:473-93. doi: 10.1007/s00018-018-2943-4.

20. Bogiatzi C., Gloor G., Allen-Vercoe E. et al. Metabolic products of the intestinal microbiome and extremes of atherosclerosis. Atherosclerosis. 2018;273:91-97. doi: 10.1016/j.atherosclerosis.2018.04.015.

21. Dias A.M., Cordeiro G., Estevinho M.M. et al. Gut bacterial microbiome composition and statin intake-A systematic review. Pharmacol Res Perspect. 2020, 8: e00601. doi: 10.1002/prp2.601.

22. Kashtanova D.A., Tkacheva O.N., Boytsov S.A. Gut microbiota and cardiovascular risk factors. Part IV. Arterial hypertension, smoking and the gut microbiota. Cardiovascular Therapy and Prevention. 2016;15(1):69-72. (In Russ.) doi: 10.15829/1728-8800-2016-1-69-72.

23. Chiu H.F., Huang Y.C., Lu Y.Y., Han Y.C., Shen Y.C., Golovinskaia O. et al. Regulatory/modulatory effect of prune essence concentrate on intestinal function and blood lipids. Pharm Biol. 2017, 55:974-9. doi: 10.1080/13880209.2017.1285323.

24. Caparrós-Martín J.A., Lareu R.R., Ramsay J.P. et al. Statin therapy causes gut dysbiosis in mice through a PXR-dependent mechanism. Microbiome. 2017;5(1):95. doi: 10.1186/s40168-017-0312-4.

25. Shen X., Li L., Sun Z., Zang G., Zhang L., Shao C., Wang Z. Gut Microbiota and Atherosclerosis-Focusing on the Plaque Stability. Front Cardiovasc Med. 2021 Aug 3;8:668532. doi: 10.3389/fcvm.2021.668532.

26. Wilmanski T., Kornilov S.A., Diener C. et al. Heterogeneity in statin responses explained by variation in the human gut microbiome. Med. 2022;3(6):388-405.e6. doi: 10.1016/j.medj.2022.04.007.

27. Ko H.H.T., Lareu R.R., Dix B.R., Hughes J.D. Statins: antimicrobial resistance breakers or makers? Peer J. 2017 Oct 24;5: e3952. doi: 10.7717/peerj.3952.

28. Vieira-Silva S., Falony G., Belda E. et al. Statin therapy is associated with lower prevalence of gut microbiota dysbiosis. Nature 2020, 581, 310-315. doi.org/10.1038/s41586-020-2269-x.

29. Hu X., Li H., Zhao X., Zhou R., Liu H., Sun Y., Fan Y., Shi Y., Qiao S., Liu S., Liu H., Zhang S. Multi-omics study reveals that statin therapy is associated with restoration of gut microbiota homeostasis and improvement in outcomes in patients with acute coronary syndrome. Theranostics. 2021;11(12):5778-5793. doi: 10.7150/thno.55946.

30. Lim G.B. Improved gut microbiota profile in individuals with obesity taking statins. Nat Rev Cardiol. 2020;17(7):385. doi: 10.1038/s41569-020-0396-6.

31. Zhu Y., Li Q., Jiang H. Gut microbiota in atherosclerosis: focus on trimethylamine N-oxide. APMIS. 2020;128(5):353-366. doi: 10.1111/apm.13038.

32. Li D.Y., Li X.S., Chaikijurajai T., Li L., Wang Z., Hazen S.L., Tang W.H.W. Relation of Statin Use to Gut Microbial Trimethylamine N-Oxide and Cardiovascular Risk. Am J Cardiol. 2022;178:26-34. doi: 10.1016/j.amjcard.2022.05.010.

33. Zhang Q., Fan X., Ye R., Hu Y., Zheng T., Shi R. et al. The effect of simvastatin on gut microbiota and lipid metabolism in hyperlipidemic rats induced by a high-fat diet. Front Pharmacol. 2020, 11:522. 10.3389/fphar.2020.0052.

34. Zhang S., Li H., Yuan L., Zhang J., Han L., Liu R. et al. Molecular characterization of gut microbiota in high-lipid diet-induced hyperlipidemic rats treated with simvastatin.Int J Mol Med. 2020 45:1601-15. 10.3892/ijmm.2020.451.

35. Catry E., Pachikian B.D., Salazar N., Neyrinck A.M., Cani P.D., Delzenne N.M. Ezetimibe and simvastatin modulate gut microbiota and expression of genes related to cholesterol metabolism. Life Sci. 2015;132:77-84. doi: 10.1016/j.lfs.2015.04.004.

36. L’niavina V.M. Changes in lipid metabolism in patients with ischemic heart disease associated with intestinal dysbiosis; metabolic effects of probiotics. 2009: 24 p. Available online: https://www.dissercat.com/content/izmeneniya-lipidnogo-obmena-u-bolnykh-ishemicheskoi-boleznyu-serdtsa-assotsiirovannoi-s-disb?ysclid=ljev2yyrd101039582 (accessed on 28 June 2023).

37. Sun B., Li L., Zhou X.Comparative analysis of the gut microbiota in distinct statin response patients in East China. J Microbiol. 2018, 56:886-92. 10.1007/s12275-018-8152-x.

38. Kim J., Lee H., An J., Song Y., Lee C.K., Kim K., Kong H. Alterations in Gut Microbiota by Statin Therapy and Possible Intermediate Effects on Hyperglycemia and Hyperlipidemia. Front Microbiol. 2019;10:1947. doi: 10.3389/fmicb.2019.01947.

39. Khan T.J., Ahmed Y.M., Zamzami M.A., Mohamed S.A., Khan I., Baothman O.A.S., Mehanna M.G., Yasir M. Effect of atorvastatin on the gut microbiota of high fat diet-induced hypercholesterolemic rats. Sci Rep. 2018;8(1):662. doi: 10.1038/s41598-017-19013-2.

40. Zhao C., Hu Y., Chen H., Li B., Cao L., Xia J., Yin Y. An in vitro evaluation of the effects of different statins on the structure and function of human gut bacterial community. PLoS One. 2020;15(3): e0230200. doi: 10.1371/journal.pone.0230200.

41. Cheng T., Li C., Shen L., Wang S., Li X., Fu C., Li T., Liu B., Gu Y., Wang W., Feng B. The Intestinal Effect of Atorvastatin: Akkermansia muciniphila and Barrier Function. Front Microbiol. 2022;12:797062. doi: 10.3389/fmicb.2021.797062.

42. Nolan J.A., Skuse P., Govindarajan K. et al. The influence of rosuvastatin on the gastrointestinal microbiota and host gene expression profiles. Am J Physiol Gastrointest Liver Physiol. 2017, 312: G488-g97. 10.1152/ajpgi.00149.2016.

43. Khan T.J., Ahmed Y.M., Zamzami M.A. et al. Atorvastatin Treatment Modulates the Gut Microbiota of the Hypercholesterolemic Patients. OMICS. 2018, 22(2):154-163. doi: 10.1089/omi.2017.0130.

44. Ryan P.M., London L.E., Bjorndahl T.C. et al. Microbiome and metabolome modifying effects of several cardiovascular disease interventions in apo-E-/- mice. Microbiome. 2017;5(1):30. doi: 10.1186/s40168-017-0246-x.

45. Haiser H.J., Turnbaugh P.J. Developing a metagenomic view of xenobiotic metabolism. Pharmacol Res. 2013 Mar;69(1):21-31. doi: 10.1016/j.phrs.2012.07.009.

46. Tuteja S., Ferguson J.F. Gut Microbiome and Response to Cardiovascular Drugs. Circ Genom Precis Med. 2019 Sep;12(9):421-429. doi: 10.1161/CIRCGEN.119.002314.

47. Kim D.H. Gut Microbiota-Mediated Drug-Antibiotic Interactions. Drug Metab Dispos. 2015 Oct;43(10):1581-9. doi: 10.1124/dmd.115.063867.

48. Sousa T., Paterson R., Moore V., Carlsson A., Abrahamsson B., Basit A.W. The gastrointestinal microbiota as a site for the biotransformation of drugs.Int J Pharm. 2008 Nov 3;363(1-2):1-25. doi: 10.1016/j.ijpharm.2008.07.009.

49. Kaddurah-Daouk R., Baillie R.A., Zhu H. et al. Enteric microbiome metabolites correlate with response to simvastatin treatment. PLoS One. 2011;6(10): e25482. doi: 10.1371/journal.pone.0025482.

50. Shen S., Wang J., Ma C., Chen Y., Ding H., Zhang J. Understanding the “individual drug reaction” from the perspective of the interaction between probiotics and lovastatin in vitro and in vivo. Microbiome. 2023 Sep 25;11(1):209. doi: 10.1186/s40168-023-01658-z.

51. Zafar H., Ain N.U., Alshammari A. et al. Lacticaseibacillus rhamnosus FM9 and Limosilactobacillus fermentum Y57 Are as Effective as Statins at Improving Blood Lipid Profile in High Cholesterol, High-Fat Diet Model in Male Wistar Rats. Nutrients. 2022 Apr 15;14(8):1654. doi: 10.3390/nu14081654.

52. Zvenigorodskaia LA, Cherkashova EA, Samsonova NG, Nilova TV, Sil’verstova SIu. [Advisability of using probiotics in the treatment of atherogenic dyslipidemia]. Eksp Klin Gastroenterol. 2011;(2):37-43.Russian. PMID: 21563361.@@ Звенигородская Л.А., Черкашова Е.А., Самсонова Н.Г., Нилова Т.В., Сильверствова С.Ю. Целесообразность применения пробиотиков в лечении атерогенной дислипидемии. Экспериментальная и клиническая гастроэнтерология. 2011; 2: 37-43.

53. Rolfe R.D.Interactions among microorganisms of the indigenous intestinal flora and their influence on the host. Rev Infect Dis. 1984 Mar-Apr;6 Suppl 1: S73-9. doi: 10.1093/clinids/6.supplement_1.s73.

54. Tian L., Liu R., Zhou Z., Xu X., Feng S., Kushmaro A., Marks R.S., Wang D., Sun Q. Probiotic Characteristics of Lactiplantibacillus Plantarum N-1 and Its Cholesterol-Lowering Effect in Hypercholesterolemic Rats. Probiotics Antimicrob Proteins. 2022 Apr;14(2):337-348. doi: 10.1007/s12602-021-09886-1.

55. Oynotkinova O.S., Nikonov E.L., Demidova T.Y., Baranov A.P., Kryukov E.V., Dedov E.I., Karavashkina E.A. [Changes in the intestinal microbiota as a risk factor for dyslipidemia, atherosclerosis and the role of probiotics in their prevention]. Ter Arkh. 2020 Oct 14;92(9):94-101.Russian. doi: 10.26442/00403660.2020.09.000784.

56. Nagpal R., Behare P.V., Kumar M. et al. Milk, milk products, and disease free health: an updated overview. Crit Rev Food Sci Nutr. 2012;52(4):321-33. doi: 10.1080/10408398.2010.500231.

57. Falcinelli S., Rodiles A., Hatef A., Picchietti S., Cossignani L., Merrifield D.L., Unniappan S., Carnevali O. Influence of Probiotics Administration on Gut Microbiota Core: A Review on the Effects on Appetite Control, Glucose, and Lipid Metabolism. J Clin Gastroenterol. 2018;52 Suppl 1, Proceedings from the 9th Probiotics, Prebiotics and New Foods, Nutraceuticals and Botanicals for Nutrition & Human and Microbiota Health Meeting, held in Rome, Italy from September 10 to 12, 2017: S50-S56. doi: 10.1097/MCG.0000000000001064.

58. Mu J., Guo X., Zhou Y., Cao G. The Effects of Probiotics/Synbiotics on Glucose and Lipid Metabolism in Women with Gestational Diabetes Mellitus: A Meta-Analysis of Randomized Controlled Trials. Nutrients. 2023;15(6):1375. doi: 10.3390/nu15061375.

59. Kumar M., Nagpal R., Kumar R., Hemalatha R., Verma V., Kumar A., Chakraborty C., Singh B., Marotta F., Jain S., Yadav H. Cholesterol-lowering probiotics as potential biotherapeutics for metabolic diseases. Exp Diabetes Res. 2012;2012:902917. doi: 10.1155/2012/902917.

60. Li X., Liu Y., Guo X., Ma Y., Zhang H., Liang H. Effect of Lactobacillus casei on lipid metabolism and intestinal microflora in patients with alcoholic liver injury. Eur J Clin Nutr. 2021;75(8):1227-1236. doi: 10.1038/s41430-020-00852-8.

61. Razmpoosh E., Javadi A., Ejtahed H.S., Mirmiran P., Javadi M., Yousefinejad A. The effect of probiotic supplementation on glycemic control and lipid profile in patients with type 2 diabetes: A randomized placebo controlled trial. Diabetes Metab Syndr. 2019;13(1):175-182. doi: 10.1016/j.dsx.2018.08.008.

62. Shimizu M., Hashiguchi M., Shiga T., Tamura H.O., Mochizuki M. Meta-Analysis: Effects of Probiotic Supplementation on Lipid Profiles in Normal to Mildly Hypercholesterolemic Individuals. PLoS One. 2015;10(10): e0139795. doi: 10.1371/journal.pone.0139795.

63. Wu Y., Zhang Q., Ren Y., Ruan Z. Effect of probiotic Lactobacillus on lipid profile: A systematic review and meta-analysis of randomized, controlled trials. PLoS One. 2017;12(6): e0178868. doi: 10.1371/journal.pone.0178868.

64. Ruscica M., Pavanello C., Gandini S. et al. Nutraceutical approach for the management of cardiovascular risk - a combination containing the probiotic Bifidobacterium longum BB536 and red yeast rice extract: results from a randomized, double-blind, placebo-controlled study. Nutr J. 2019;18(1):13. doi: 10.1186/s12937-019-0438-2.

65. Wang L., Guo M.J., Gao Q., Yang J.F., Yang L., Pang X.L., Jiang X.J. The effects of probiotics on total cholesterol: A meta-analysis of randomized controlled trials. Medicine (Baltimore). 2018 Feb;97(5): e9679. doi: 10.1097/MD.0000000000009679.

66. Mo R., Zhang X., Yang Y. Effect of probiotics on lipid profiles in hypercholesterolaemic adults: A meta-analysis of randomized controlled trials. Med Clin (Barc). 2019 Jun 21;152(12):473-481. English, Spanish. doi: 10.1016/j.medcli.2018.09.007.

67. Hiippala K., Jouhten H., Ronkainen A., Hartikainen A., Kainulainen V., Jalanka J., Satokari R. The Potential of Gut Commensals in Reinforcing Intestinal Barrier Function and Alleviating Inflammation. Nutrients. 2018 Jul 29;10(8):988. doi: 10.3390/nu10080988.

68. Qiu L., Tao X., Xiong H., Yu J., Wei H. Lactobacillus plantarum ZDY04 exhibits a strain-specific property of lowering TMAO via the modulation of gut microbiota in mice. Food Funct. 2018 Aug 15;9(8):4299-4309. doi: 10.1039/c8fo00349a.

69. Cavallini D.C., Manzoni M.S., Bedani R. et al. Probiotic Soy Product Supplemented with Isoflavones Improves the Lipid Profile of Moderately Hypercholesterolemic Men: A Randomized Controlled Trial. Nutrients. 2016 Jan 19;8(1):52. doi: 10.3390/nu8010052.

70. Dönmez N., Kısadere İ., Balaban C., Kadiralieva N. Effects of traditional homemade koumiss on some hematological and biochemical characteristics in sedentary men exposed to exercise. Biotech Histochem. 2014 Nov;89(8):558-63. doi: 10.3109/10520295.2014.915428.

71. DiRienzo D.B. Effect of probiotics on biomarkers of cardiovascular disease: implications for heart-healthy diets. Nutr Rev. 2014 Jan;72(1):18-29. doi: 10.1111/nure.12084.

72. Rerksuppaphol S., Rerksuppaphol L. A Randomized Double-blind Controlled Trial of Lactobacillus acidophilus Plus Bifidobacterium bifidum versus Placebo in Patients with Hypercholesterolemia. J Clin Diagn Res. 2015 Mar;9(3): KC01-4. doi: 10.7860/JCDR/2015/11867.5728.

73. Bernini L.J., Simão A.N., Alfieri D.F., Lozovoy M.A., Mari N.L., de Souza C.H., Dichi I., Costa G.N. Beneficial effects of Bifidobacterium lactis on lipid profile and cytokines in patients with metabolic syndrome: A randomized trial. Effects of probiotics on metabolic syndrome. Nutrition. 2016 Jun;32(6):716-9. doi: 10.1016/j.nut.2015.11.001.

74. Guardamagna O., Amaretti A., Puddu P.E., Raimondi S., Abello F., Cagliero P., Rossi M. Bifidobacteria supplementation: effects on plasma lipid profiles in dyslipidemic children. Nutrition. 2014 Jul-Aug;30(7-8):831-6. doi: 10.1016/j.nut.2014.01.014.

75. Bertolami M.C., Faludi A.A., Batlouni M. Evaluation of the effects of a new fermented milk product (Gaio) on primary hypercholesterolemia. Eur J Clin Nutr. 1999 Feb;53(2):97-101. doi: 10.1038/sj.ejcn.1600683.

76. L’niavina V.M., Baryshnikova N.V., Uspenskiy Y.P., Ermolenko E.I., Suvorov A.N. Probiotics in the correction of lipid metabolism. Problems of medical mycology. 2023; 25 (2): 85. Available at: https://mycology.szgmu.ru/images/2-2023.pdf (accessed 28 June 2023)

77. Ooi L.G., Liong M.T. Cholesterol-lowering effects of probiotics and prebiotics: a review of in vivo and in vitro findings.Int J Mol Sci. 2010 Jun 17;11(6):2499-522. doi: 10.3390/ijms11062499.

78. Khongrum J., Yingthongchai P., Boonyapranai K. et al. Safety and Effects of Lactobacillus paracasei TISTR 2593 Supplementation on Improving Cholesterol Metabolism and Atherosclerosis-Related Parameters in Subjects with Hypercholesterolemia: A Randomized, Double-Blind, Placebo-Controlled Clinical Trial. Nutrients. 2023 Jan 28;15(3):661. doi: 10.3390/nu15030661.

79. Yang L., Xie X., Li Y., Wu L. et al. Evaluation of the Cholesterol-Lowering Mechanism of Enterococcus faecium Strain 132 and Lactobacillus paracasei Strain 201 in Hypercholesterolemia Rats. Nutrients. 2021 Jun 9;13(6):1982. doi: 10.3390/nu13061982.

80. Xu W., Zou K., Zhan Y., Cai Y., Zhang Z., Tao X., Qiu L., Wei H. Enterococcus faecium GEFA01 alleviates hypercholesterolemia by promoting reverse cholesterol transportation via modulating the gut microbiota-SCFA axis. Front Nutr. 2022 Nov 8;9:1020734. doi: 10.3389/fnut.2022.1020734.

81. Suvorov A., Karaseva A., Kotyleva M. et al. Autoprobiotics as an approach for restoration of personalised microbiota. Front. Microbiol. 2018; 9:1869. (in Russ.) doi: 10.3389/fmicb.2018.01869.

82. Tsapieva A.N., Borovkova E.A., Karaseva A.B., Alieva E.V., Suvorov A.N. Development of a method for identification of indigenous gut lactobacilli in the creation of autoprobiotics. Voprosy detskoi dietologii = Pediatric Nutrition. 2019; 17 (3): 52-59. (in Russ.) doi: 10.20953/1727-5784-2019-3-52-59.

83. Ermolenko E.I., Abdurasulova I.N., Kotyleva M.P., Svirido D.A., Matsulevich A.V., Karaseva A.B. Effects of Indigenous enterococci on the Intestinal Microbiota and the Behavior of Rats. Neuroscience and Behavioral Physiology, 2018, 48(4):496-505. (in Russ.) doi: 10.1007/s11055-018-0591.

84. Simanenkov V.I., Bakulina N.V., Tikhonov S.V., Ermolenko E.I., Dekkanova V.D., Kotyleva M.P., Lavrenova N.S., Voropaeva L.S., Korzheva M.D., Suvorov A.N., Tsapieva A.N. Efficacy and safety of autoprobiotic therapy in patients with type 2 diabetes mellitus. Medical alphabet. 2020;1(30):48-53. (In Russ.). doi: 10.33667/2078-5631-2020-30-48-53.

85. Simanenkov V.I., Suvorov A.N., Solovyova O.I. A method for obtaining a personalized autoprobiotic product and a method for treating irritable bowel syndrome using this product. RF Patent for invention No. 2546253 / 02.03.2015. Byul. No. 10. Available at: http://www.findpatent.ru/patent/254/2546253.html (accessed on 30 June 2023).

86. Baryshnikova N. V., Alferova L.S., Demchenko E.A., Lavrenova N.S., Tsapieva A.N., Suvorov A.N., Ermolenko E.I. The effectiveness of autoprobiotics in the correction of lipid metabolism. Experimental and Clinical Gastroenterology. 2023;220(12): (In Russ.) doi: 10.31146/1682-8658-ecg-220-12-97-102.

87. Vourakis M., Mayer G., Rousseau G. The Role of Gut Microbiota on Cholesterol Metabolism in Atherosclerosis.Int J Mol Sci. 2021;22(15):8074. doi: 10.3390/ijms22158074.

88. Sudun Liu S., Xiao C., Peng C., Liang L., He X., Zhao S., Zhang G. Probiotic strains improve high-fat diet-induced hypercholesterolemia through modulating gut microbiota in ways different from atorvastatin. Food Funct. 2019;10(9):6098-6109. doi: 10.1039/c9fo00444k.

89. Wang L., Wang Y., Wang H., Zhou X., Wei X., Xie Z., Zhang Z., Wang K., Mu J. The influence of the intestinal microflora to the efficacy of Rosuvastatin. Lipids Health Dis. 2018;17(1):151. doi: 10.1186/s12944-018-0801-x.

90. Peng Chen and Kangbao Li Statin Therapy and Gut Microbiota. doi: 10.5772/intechopen.1001098. Available at: https://www.intechopen.com/chapters/1129562 (accessed on 28 June 2023).

91. Eckel R.H., Bruce K.D. Statins, gut microbiome, LDL-C, glucose intolerance: Personalized medicine timely? Med. 2022;3(6):355-357. doi: 10.1016/j.medj.2022.05.006.

92. Reis S.A., Conceição L.L., Rosa D.D., Siqueira N.P., Peluzio M.C.G. Mechanisms responsible for the hypocholesterolaemic effect of regular consumption of probiotics. Nutr Res Rev. 2017;30(1):36-49. doi: 10.1017/S0954422416000226.

93. Oliveira P.W.C., Couto M.R., de Sousa G.J., Peixoto P., Moraes F.S.A., de Andrade T.U., Bissoli N.S. Effects of Drugs, Phytoestrogens, Nutrients and Probiotics on Endothelial Dysfunction in the Estrogen-Deficient State. Curr Pharm Des. 2020;26(30):3711-3722. doi: 10.2174/1381612826666200331084338.

94. Zvenigorodskaia L.A., Cherkashova E.A., Samsonova N.G., Nilova T.V., Sil’verstova S. Iu. [Advisability of using probiotics in the treatment of atherogenic dyslipidemia]. Eksp Klin Gastroenterol. 2011;(2):37-43.Russian. PMID: 21563361.

95. Zvenigorodskaia L.A., Samsonova N.G., Mel’nikova N.V., Cherkashova E.A. [Hypolipidemic therapy in patients with non-alcoholic fatty liver disease]. Eksp Klin Gastroenterol. 2010;(7):25-33.Russian. PMID: 21033080.


Рецензия

Для цитирования:


Барышникова Н.В., Льнявина В.М., Успенский Ю.П., Суворов А.Н., Ермоленко Е.И. Коррекция липидного обмена статинами и пробиотиками. Экспериментальная и клиническая гастроэнтерология. 2024;(9):161-174. https://doi.org/10.31146/1682-8658-ecg-229-9-161-174

For citation:


Baryshnikova N.V., L’Nyavina V.M., Uspenskiy Yu.P., Suvorov A.N., Ermolenko E.I. Lipid metabolism correction with statins and probiotics. Experimental and Clinical Gastroenterology. 2024;(9):161-174. (In Russ.) https://doi.org/10.31146/1682-8658-ecg-229-9-161-174

Просмотров: 803


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 1682-8658 (Print)