Preview

Experimental and Clinical Gastroenterology

Advanced search

Accurate assessment of nocturnal blood pressure fall in patients with type 2 diabetes mellitus and resistant hypertension

https://doi.org/10.31146/1682-8658-ecg-229-9-126-134

Abstract

Aim. To study the relationship between nocturnal blood pressure (BP) fall and kidney damage, the severity of obesity and markers of sympathetic activity in patients with type 2 diabetes mellitus (DM2) combined with resistant hypertension (HTN) depending on the accuracy of its assessment. Material and methods. The cross-sectional study included 64 patients with DM2 and resistant HTN, mean age 60.5±7.7 years (38 women), 24-hour BP (systolic/diastolic) (SBP/DBP) 155.9±16.7/81.4±12.7 mm Hg, HbA1c 7.3±1.5%. Patients underwent evaluation of free metanephrine, normetanephrine and lipocalin-2 levels in the blood, 24h urinary albumin excretion (UAE), 24h blood pressure monitoring and electrocardiography with assessment of heart rate variability (HRV) (low-frequency (LF) and high-frequency (HF) components). Nocturnal BP fall was determined using the standard (with a fixed sleep time interval of 23-7 h) and optimized methods (using a mathematical algorithm for detecting the nocturnal sleep period). Results. Significant correlations were found between the degree of nighttime decrease in SBP, calculated by the optimized method, but not by standard method, and HRV indices (r= -0.64, p<0.001 for LF; r=0.55 p=0.004 for HF; r= -0.65 p<0.001 for the LF/HF ratio), with the level of normetanephrines (r= -0.47, p=0.025), UAE (r= -0.47, p=0.008) and lipocalin-2 (r= -0.52, p=0.012). In patients with a body mass index (BMI)≥35 kg/m2, degree of nighttime decrease in SBP according to the optimized method was 2.5 times lower than in individuals with a BMI<35 kg/m2 (3.5±5.5 and 8.7±6.6%, respectively, p=0.003). Conclusion. In type 2 diabetic patients with resistant hypertension, the degree of nocturnal blood pressure fall calculated on the basis of objective determination of the time of night rest, in contrast to the standard method, is closely associated with markers of kidney damage, the severity of obesity, clinical and laboratory signs of sympathetic activity.

About the Authors

M. A. Manukyan
Cardiology Research Institute Tomsk National Research Medical Center, Russian Academy of Sciences
Russian Federation


V. F. Mordovin
Cardiology Research Institute Tomsk National Research Medical Center, Russian Academy of Sciences
Russian Federation


I. V. Zyubanova
Cardiology Research Institute Tomsk National Research Medical Center, Russian Academy of Sciences
Russian Federation


V. A. Lichikaki
Cardiology Research Institute Tomsk National Research Medical Center, Russian Academy of Sciences
Russian Federation


E. I. Solonskaya
Cardiology Research Institute Tomsk National Research Medical Center, Russian Academy of Sciences
Russian Federation


S. A. Khunkhinova
Cardiology Research Institute Tomsk National Research Medical Center, Russian Academy of Sciences
Russian Federation


A. A. Popova
Cardiology Research Institute Tomsk National Research Medical Center, Russian Academy of Sciences
Russian Federation


V. V. Rudenko
Cardiology Research Institute Tomsk National Research Medical Center, Russian Academy of Sciences
Russian Federation


A. Yu. Falkovskaya
Cardiology Research Institute Tomsk National Research Medical Center, Russian Academy of Sciences
Russian Federation


References

1. Böhm M., de la Sierra A., Mahfoud F. et al. Office measurement vs. ambulatory blood pressure monitoring: associations with mortality in patients with or without diabetes. Eur Heart J. 2024;45(31):2851-2861. doi: 10.1093/eurheartj/ehae337.

2. Afsar B., Sezer S., Elsurer R., Ozdemir F.N. Is HOMA index a predictor of nocturnal nondipping in hypertensives with newly diagnosed type 2 diabetes mellitus? Blood Pressure Monitoring. 2007;12(3):133-139. doi: 10.1097/MBP.0b013e3280b08379.

3. Fogari R., Zoppi A., Malamani G.D. et al. Ambulatory Blood Pressure Monitoring in Normotensive and Hypertensive Type 2 Diabetics Prevalence of Impaired Diurnal Blood Pressure Patterns. American Journal of Hypertension. 1993;6(1):1-7. doi: 10.1093/ajh/6.1.1.

4. Nikolaidou B., Anyfanti P., Gavriilaki E. et al. Non-dipping pattern in early-stage diabetes: association with glycemic profile and hemodynamic parameters. J Hum Hypertens. 2022;36(9):805-810. doi: 10.1038/s41371-021-00587-4.

5. Pistrosch F., Reissmann E., Wildbrett J. et al. Relationship Between Diurnal Blood Pressure Variation and Diurnal Blood Glucose Levels in Type 2 Diabetic Patients: American Journal of Hypertension. 2007;20(5):541-545. doi: 10.1016/j.amjhyper.2006.10.010.

6. Zhang J., Sun R., Jiang T. et al. Circadian Blood Pressure Rhythm in Cardiovascular and Renal Health and Disease. Biomolecules. 2021;11(6):868. doi: 10.3390/biom11060868.

7. Bankir L., Bochud M., Maillard M. et al. Nighttime Blood Pressure and Nocturnal Dipping Are Associated With Daytime Urinary Sodium Excretion in African Subjects. Hypertension. 2008;51(4):891-898. doi: 10.1161/HYPERTENSIONAHA.107.105510.

8. Motiejunaite J., Flamant M., Arnoult F. et al. Predictors of daytime blood pressure, nighttime blood pressure, and nocturnal dipping in patients with chronic kidney disease. Hypertens Res. 2024;47(9):2511-2520. doi: 10.1038/s41440-024-01778-5.

9. Kimura G. Importance of inhibiting sodium-glucose cotransporter and its compelling indication in type 2 diabetes: pathophysiological hypothesis. J Am Soc Hypertens. 2016;10(3):271-278. doi: 10.1016/j.jash.2016.01.009.

10. Mulec H., Blohmé G., Kullenberg K. et al. Latent overhydration and nocturnal hypertension in diabetic nephropathy. Diabetologia. 1995;38(2):216-220. doi: 10.1007/BF00400097.

11. Carey R.M., Calhoun D.A., Bakris G.L. et al. Resistant Hypertension: Detection, Evaluation, and Management. Hypertension. 2018;72(5): e53-e90. doi: 10.1161/HYP.0000000000000084.

12. Astrup A.S., Nielsen F.S., Rossing P. et al. Predictors of mortality in patients with type 2 diabetes with or without diabetic nephropathy: a follow-up study. J Hypertens. 2007;25(12):2479-2485. doi: 10.1097/HJH.0b013e3282f06428.

13. Chiriacò M., Sacchetta L., Forotti G. et al. Prognostic value of 24-hour ambulatory blood pressure patterns in diabetes: A 21-year longitudinal study. Diabetes Obes Metab. 2022;24(11):2127-2137. doi: 10.1111/dom.14798.

14. Cardoso C.R.L., Salles G.F. Associations of the nocturnal blood pressure fall and morning surge with cardiovascular events and mortality in individuals with resistant hypertension. Journal of Hypertension. 2021;39(6):1177. doi: 10.1097/HJH.0000000000002775.

15. Ohkubo T., Hozawa A., Yamaguchi J. et al. Prognostic significance of the nocturnal decline in blood pressure in individuals with and without high 24-h blood pressure: the Ohasama study. J Hypertens. 2002;20(11):2183-2189. doi: 10.1097/00004872-200211000-00017.

16. Kario K. Nocturnal Hypertension: New Technology and Evidence. Hypertension.2018;71(6):997-1009. doi: 10.1161/HYPERTENSIONAHA.118.10971.

17. Shams E., Kamalumpundi V., Peterson J. et al. Highlights of mechanisms and treatment of obesity-related hypertension. J Hum Hypertens. 2022;36(9):785-793. doi: 10.1038/s41371-021-00644-y.

18. Chumakova G.A., Ott A.V., Veselovskaya N.G., Gritsenko O.V., Shenkova N.N. Pathogenetic mechanisms of leptin resistance.Russian Journal of Cardiology. 2015;(4):107-110. (In Russ.) doi: 10.15829/1560-4071-2015-4-107-110.@@ Чумакова Г.А., Отт А.В., Веселовская Н.Г., Гриценко О.В., Шенкова Н.Н. Патогенетические механизмы лептинорезистентности. Российский кардиологический журнал. 2015;(4):107-110. doi: 10.15829/1560-4071-2015-4-107-110.

19. Gruzdeva O., Borodkina D., Uchasova E. et al. Leptin resistance: underlying mechanisms and diagnosis. Diabetes Metab Syndr Obes. 2019;12:191-198. doi: 10.2147/DMSO.S182406.

20. Pekarskiy S.E., Mordovin V.F., Gordeeva E.V. et al. Assessment of the nocturnal blood pressure dip based on the original mathematical algorithm of detecting real nighttime periods according to ABPM data. Siberian Medical Journal. 2009;24(2-1):23-26. (In Russ.)@@ Пекарский С.Е., Мордовин В.Ф., Гордеева Е.В. и др. Клиническая эффективность нового метода оценки ночного снижения АД на основе объективного распознавания фактических периодов ночного отдыха пациента непосредственно по данным амбулаторного мониторирования АД. Сибирский медицинский журнал.2009;24(2-1):23-26.

21. Pekarskii S.E., Mordovin V.F., Kolodina M.V. et al. Recognition of actual periods of nocturnal rest from 24-hour heart rate profile. Kardiologiia. 2005;45(2):2023. (In Russ.)@@ Пекарский С.Е., Мордовии В.Ф., Колодина М.В. и соавт. Метод точного автоматического анализа данных амбулаторного мониторирования артериального давления на основе распознавания фактических периодов ночного отдыха по суточному профилю сердечного ритма. Кардиология. 2005;45(2):20-23.

22. Pekarsky S. E., Mordovina V.F., Semke G.V. et al. [A method for accurately assessing the nocturnal decrease in blood pressure based on objective recognition of the actual periods of the patient’s night rest directly from outpatient monitoring data]. New medical technologies in the prevention, diagnosis and treatment of cardiovascular diseases: Guidelines. Tomsk: Tomskii natsional’nyi issledovatel’skii meditsinskii tsentr Rossiiskoi akademii nauk. 2018. pp. 236-244. (In Russ.)@@ Метод точной оценки ночного снижения артериального давления, основанный на объективном распознавании фактических периодов ночного отдыха пациента непосредственно по данным амбулаторного мониторирования / С.Е. Пекарский, В.Ф. Мордовин, Г.В. Семке [и др.] // Новые медицинские технологии в профилактике, диагностике и лечении сердечно-сосудистых заболеваний: Методические рекомендации. - Томск: Томский национальный исследовательский медицинский центр Российской академии наук, 2018. - С. 236-244.

23. Heart rate variability: standards of measurement, physiological interpretation and clinical use. Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology. Circulation. 1996;93(5):1043-1065.

24. Ayala D.E., Moyá A., Crespo J.J. et al. Circadian Pattern of Ambulatory Blood Pressure in Hypertensive Patients With and Without Type 2 Diabetes. Chronobiology International. 2013;30(1-2):99-115. doi: 10.3109/ 07420528.2012.701489.

25. Hänninen J.A., Takala J.K., Keinänen-Kiukaanniemi S.M. Blood pressure control in subjects with type 2 diabetes. J Hum Hypertens. 2000;14(2):111-115. doi: 10.1038/sj.jhh.1000947.

26. Alicheva Ya.M., Shpagina L.A., Panacheva L.A., Shpagin I.S., Bazhenova K.O. Circadian blood pressure profile and the state of the autonomic nervous system in elderly patients with chronic obstructive pulmonary disease combined with arterial hypertension. Siberian Journal of Clinical and Experimental Medicine. 2014; 29(1):43-47. (In Russ.) doi: 10.29001/2073-8552-2014-29-1-43-47.@@ Аличева Я.М., Шпагина Л.А., Паначева Л.А., Шпагин И.С., Баженова К.О. Суточный профиль артериального давления и состояние вегетативной нервной системы у пациентов старших возрастных групп с хронической обструктивной болезнью легких в сочетании с артериальной гипертензией. Сибирский журнал клинической и экспериментальной медицины. 2014;29(1):43-47. doi: 10.29001/2073-8552-2014-29-1-43-47.

27. Gubanova M.V., Kushnarenko N.N., Karavaeva T.M. Clinical significance of 24-hour blood pressure monitoring in prediction of hypertension development in patients with gout. Siberian Journal of Clinical and Experimental Medicine. 2021; 36(3):104-110. (In Russ.) doi: 10.29001/2073-8552-2021-36-3-104-110.@@ Губанова М.В., Кушнаренко Н.Н., Караваева Т.М. Клиническое значение суточного мониторирования артериального давления в прогнозировании развития артериальной гипертензии у больных подагрой. Сибирский журнал клинической и экспериментальной медицины. 2021;36(3):104-110. doi: 10.29001/2073-8552-2021-36-3-104-110.

28. Gapon L.I., Sereda T.V., Leontyeva A.V. Carotid atherosclerosis and 24-hour blood pressure profile in indigenous and alien populations of the Far North. Siberian Journal of Clinical and Experimental Medicine. 2014;29(1):30-34. (In Russ.) doi: 10.29001/2073-8552-2014-29-1-30-34.@@ Гапон Л.И., Середа Т.В., Леонтьева А.В. Каротидный атеросклероз и суточный профиль артериального давления у коренного и пришлого населения Крайнего Севера. Сибирский журнал клинической и экспериментальной медицины. 2014;29(1):30-34. doi: 10.29001/2073-8552-2014-29-1-30-34.

29. Eguchi K., Pickering T.G., Hoshide S. et al. Ambulatory Blood Pressure Is a Better Marker Than Clinic Blood Pressure in Predicting Cardiovascular Events in Patients With/Without Type 2 Diabetes. American Journal of Hypertension. 2008;21(4):443-450. doi: 10.1038/ajh.2008.4.

30. Afsar B., Elsurer R. Increased renal resistive index in type 2 diabetes: Clinical relevance, mechanisms and future directions. Diabetes & Metabolic Syndrome. 2017;11(4):291-296. doi: 10.1016/j.dsx.2016.08.019.

31. Moran A., Palmas W., Pickering T.G. et al. Office and Ambulatory Blood Pressure Are Independently Associated With Albuminuria in Older Subjects With Type 2 Diabetes. Hypertension. 2006;47(5):955-961. doi: 10.1161/01.HYP.0000216634.73504.7d.

32. Hermida R.C., Ayala D.E., Fernández J.R., Mojón A. Sleep-Time Blood Pressure: Prognostic Value and Relevance as a Therapeutic Target for Cardiovascular Risk Reduction. Chronobiology International. 2013;30(1-2):68-86. doi: 10.3109/07420528.2012.702581.

33. Equiluz-Bruck S., Schnack C., Kopp H.P., Schernthaner G. Nondipping of Nocturnal Blood Pressure Is Related to Urinary Albumin Excretion Rate in Patients With Type 2 Diabetes Mellitus. American Journal of Hypertension. 1996;9(11):1139-1143. doi: 10.1016/0895-7061(96)00302-0.

34. Moczulska B., Zechowicz M., Leśniewska S. et al. The Impact of Obesity on Nighttime Blood Pressure Dipping. Medicina (Kaunas). 2020;56(12):700. doi: 10.3390/medicina56120700.

35. Cuspidi C., Meani S., Valerio C. et al. Body mass index, nocturnal fall in blood pressure and organ damage in untreated essential hypertensive patients. Blood Pressure Monitoring. 2008;13(6):318-324. doi: 10.1097/MBP.0b013e32830d4bf8.

36. Chumakova G.A., Kuznetsova T.Y., Druzhilov M.A., Veselovskaya N.G. Obesity induced hypertension: The main pathophysiological mechanisms. «Arterial’naya Gipertenziya» («Arterial Hypertension»). 2021;27(3):260-268. (In Russ.) doi: 10.18705/1607-419X-2021-27-3-260-268.@@ Чумакова Г.А., Кузнецова Т.Ю., Дружилов М.А., Веселовская Н.Г. Индуцированная ожирением артериальная гипертензия. Основные патофизиологические механизмы развития. Артериальная гипертензия. 2021;27(3):260-268. doi: 10.18705/1607-419X-2021-27-3-260-268.

37. Hall M.E., Cohen J.B., Ard J.D. et al. Weight-Loss Strategies for Prevention and Treatment of Hypertension: A Scientific Statement From the American Heart Association. Hypertension. 2021;78(5): e38-e50. doi: 10.1161/HYP.0000000000000202.


Review

For citations:


Manukyan M.A., Mordovin V.F., Zyubanova I.V., Lichikaki V.A., Solonskaya E.I., Khunkhinova S.A., Popova A.A., Rudenko V.V., Falkovskaya A.Yu. Accurate assessment of nocturnal blood pressure fall in patients with type 2 diabetes mellitus and resistant hypertension. Experimental and Clinical Gastroenterology. 2024;(9):126-134. (In Russ.) https://doi.org/10.31146/1682-8658-ecg-229-9-126-134

Views: 286


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1682-8658 (Print)