Preview

Экспериментальная и клиническая гастроэнтерология

Расширенный поиск

Фармакодинамические характеристики куркумина

https://doi.org/10.31146/1682-8658-ecg-228-8-291-306

Аннотация

Куркумин, активное вещество, получаемое из корня куркумы (Curcuma longa), обладает значительными фармакологическими свойствами, включая противовоспалительное, антиоксидантное, антимикробное, противораковое и анальгезирующее действия. Исследования показывают, что куркумин оказывает влияние на экспрессию различных микроРНК и длинных некодирующих РНК, что позволяет регулировать пролиферацию и апоптоз клеток в различных типах злокачественных опухолей. Кроме того, куркумин модулирует сигнальные пути, такие как PI3K/Akt/mTOR, MAPK/ERK и AMPK, активируя аутофагию и подавляя ангиогенез опухолей. Он также ингибирует метастазирование и инвазию опухолевых клеток, воздействуя на эпителиально-мезенхимальный переход и экспрессию матриксных металлопротеиназ. Куркумин проявляет антибактериальную и противовирусную активность, разрушая мембраны бактериальных клеток и подавляя репликацию вирусов. Антиоксидантные свойства куркумина обусловлены его способностью нейтрализовать активные формы кислорода и стимулировать антиоксидантные ферменты. Куркумин также способствует заживлению ран, модулируя воспалительные процессы и стимулируя ангиогенез. Анальгезирующее действие куркумина связано с его способностью стимулировать выброс эндогенных опиоидных пептидов и модулировать активность ГАМК-рецепторов и ионных каналов ASIC и TRPV. Куркумин оказывает влияние на липидный и углеводный обмен, что делает его перспективным средством для лечения дислипидемии и инсулинорезистентности. Влияние куркумина на гемостаз проявляется в его способности ингибировать агрегацию тромбоцитов и свертывание крови, что может быть полезно для профилактики сердечно-сосудистых заболеваний.

Об авторах

Е. В. Шрайнер
Новосибирский государственный университет; Институт химической биологии и фундаментальной медицины СО РАН; ГК Центр Новых медицинских технологий; «Soloways» лаборатория
Россия


К. М. Николайчук
Новосибирский государственный университет
Россия


А. И. Хавкин
Научно-исследовательский клинический институт детства Министерства здравоохранения Московской области; Белгородский государственный исследовательский университет
Россия


А. С. Веременко
Новосибирский государственный университет
Россия


И. Д. Левченко
Новосибирский государственный университет
Россия


П. Я. Платонова
Новосибирский государственный университет
Россия


М. Ф. Новикова
Новосибирский государственный университет
Россия


А. С. Тумас
Новосибирский государственный университет
Россия


Е. Е. Вергунова
Новосибирский государственный университет
Россия


Д. А. Лукичев
Новосибирский государственный университет
Россия


Д. А. Сергеев
Новосибирский государственный университет
Россия


Е. А. Покушалов
ГК Центр Новых медицинских технологий; «Soloways» лаборатория
Россия


Д. А. Кудлай
Новосибирский государственный университет; Первый Московский государственный медицинский университет имени И. М. Сеченова (Сеченовский университет); МГУ имени М. В. Ломоносова
Россия


Список литературы

1. Urošević M., Nikolić L., Gajić I., Nikolić V., Dinić A., MИЛjković V. Curcumin: Biological Activities and Modern Pharmaceutical Forms. Antibiotics (Basel). 2022 Jan 20;11(2):135. doi: 10.3390/antibiotics11020135.

2. Liu S., Liu J., He L., Liu L., Cheng B., Zhou F. et al. A Comprehensive Review on the Benefits and Problems of Curcumin with Respect to Human Health. Molecules. 2022 Jul 8;27(14):4400. doi: 10.3390/molecules27144400.

3. Pan L., Sha J., Lin W., Wang Y., Bian T., Guo J. Curcumin inhibits prostate cancer progression by regulating the miR-30a-5p/PCLAF axis. Exp Ther Med. 2021 Sep;22(3):969. doi: 10.3892/etm.2021.10401.

4. Zhu M., Zheng Z., Huang J., Ma X., Huang C., Wu R. et al. Modulation of miR-34a in curcumin-induced antiproliferation of prostate cancer cells. J Cell Biochem. 2019 Sep;120(9):15616-15624. doi: 10.1002/jcb.28828.

5. Cao H., Yu H., Feng Y., Chen L., Liang F. Curcumin inhibits prostate cancer by targeting PGK1 in the FOXD3/miR-143 axis. Cancer Chemother Pharmacol. 2017 May;79(5):985-994. doi: 10.1007/s00280-017-3301-1.

6. Li J., Wei H., Liu Y., Li Q., Guo H., Guo Y. et al. Curcumin Inhibits Hepatocellular Carcinoma via Regulating miR-21/TIMP3 Axis. Evid Based Complement Alternat Med. 2020 Jul 17;2020:2892917. doi: 10.1155/2020/2892917.

7. Chen C.P., Xu Q., Zhao H. F.Intervention of curcumin on the expression of miR-29 and VEGF in liver cancer cells. Zhejiang J.Integr. Tradit. Chin. West. Med. 2020; 30: 785-790.

8. Dou H., Shen R., Tao J., Huang L., Shi H., Chen H. et al. Curcumin Suppresses the Colon Cancer Proliferation by Inhibiting Wnt/β-Catenin Pathways via miR-130a. Front Pharmacol. 2017 Nov 24;8:877. doi: 10.3389/fphar.2017.00877.

9. Li B., Shi C., Li B., Zhao J. M., Wang L. The effects of Curcumin on HCT-116 cells proliferation and apoptosis via the miR-491/PEG10 pathway. J Cell Biochem. 2018 Apr;119(4):3091-3098. doi: 10.1002/jcb.26449.

10. Ling Y.L., Xu L., Wu C. Curcumin inhibits the proliferation, migration and invasion of colon cancer SW1116 cells through miR-199b-5p. Chin. Pharmacol. Bull. 2020; 36: 957-964.

11. Pan Y., Sun Y., Liu Z., Zhang C. miR-192-5p upregulation mediates the suppression of curcumin in human NSCLC cell proliferation, migration and invasion by targeting c-Myc and inactivating the Wnt/β-catenin signaling pathway. Mol Med Rep. 2020 Aug;22(2):1594-1604. doi: 10.3892/mmr.2020.11213.

12. Wang K., Tan S. L., Lu Q., Xu R., Cao J., Wu S. Q. et al. Curcumin Suppresses microRNA-7641-Mediated Regulation of p16 Expression in Bladder Cancer. Am J Chin Med. 2018;46(6):1357-1368. doi: 10.1142/S0192415X18500714.

13. Xu R., Li H., Wu S., Qu J., Yuan H., Zhou Y. et al. MicroRNA-1246 regulates the radio-sensitizing effect of curcumin in bladder cancer cells via activating P53.Int Urol Nephrol. 2019 Oct;51(10):1771-1779. doi: 10.1007/s11255-019-02210-5.

14. Zhao S.F., Zhang X., Zhang X. J., Shi X. Q., Yu Z. J., Kan Q. C. Induction of microRNA-9 mediates cytotoxicity of curcumin against SKOV3 ovarian cancer cells. Asian Pac J Cancer Prev. 2014;15(8):3363-8. doi: 10.7314/apjcp.2014.15.8.3363.

15. Wang W.H., Chen J., Zhang B. R., Lu S. J., Wang F., Peng L. et al. Curcumin inhibits proliferation and enhances apoptosis in A549 cells by downregulating lncRNA UCA1. Pharmazie. 2018 Jul 1;73(7):402-407. doi: 10.1691/ph.2018.8402.

16. Yu H., Xie Y., Zhou Z., Wu Z., Dai X., Xu B. Curcumin Regulates the Progression of Colorectal Cancer via LncRNA NBR2/AMPK Pathway. Technol Cancer Res Treat. 2019 Jan-Dec;18:1533033819870781. doi: 10.1177/1533033819870781.

17. Kocaturk N.M., Akkoc Y., Kig C., Bayraktar O., Gozuacik D., Kutlu O. Autophagy as a molecular target for cancer treatment. Eur J Pharm Sci. 2019 Jun 15;134:116-137. doi: 10.1016/j.ejps.2019.04.011.

18. Zhao G., Han X., Zheng S., Li Z., Sha Y., Ni J. et al. Curcumin induces autophagy, inhibits proliferation and invasion by downregulating AKT/mTOR signaling pathway in human melanoma cells. Oncol Rep. 2016 Feb;35(2):1065-74. doi: 10.3892/or.2015.4413.

19. Liu L.D., Pang Y. X., Zhao X. R., Li R., Jin C. J. et al. Curcumin induces apoptotic cell death and protective autophagy by inhibiting AKT/mTOR/p70S6K pathway in human ovarian cancer cells. Arch Gynecol Obstet. 2019 Jun;299(6):1627-1639. doi: 10.1007/s00404-019-05058-3.

20. Shakeri A., Cicero A. F.G., Panahi Y., Mohajeri M., Sahebkar A. Curcumin: A naturally occurring autophagy modulator. J Cell Physiol. 2019 May;234(5):5643-5654. doi: 10.1002/jcp.27404.

21. Chen Q., MenY., Wang H., Chen R., Han X., Liu J. Curcumin Inhibits Proliferation and Migration of A549 Lung Cancer Cells Through Activation of ERK1/2 Pathway-induced Autophagy. Nat. Prod.Commun. 2019; 14: 1934578X19848179. doi: 10.1177/1934578X19848179.

22. Xiao K., Jiang J., Guan C., Dong C., Wang G., Bai L. et al. Curcumin induces autophagy via activating the AMPK signaling pathway in lung adenocarcinoma cells. J Pharmacol Sci. 2013;123(2):102-9. doi: 10.1254/jphs.13085fp.

23. Zhang C., Hao Y., Wu L., Dong X., Jiang N., Cong B. et al. Curcumin induces apoptosis and inhibits angiogenesis in murine malignant mesothelioma.Int J Oncol. 2018 Dec;53(6):2531-2541. doi: 10.3892/ijo.2018.4569.

24. Fan S., Xu Y., Li X., Tie L., Pan Y., Li X. Opposite angiogenic outcome of curcumin against ischemia and Lewis lung cancer models: in sИЛico, in vitro and in vivo studies. Biochim Biophys Acta. 2014 Sep;1842(9):1742-54. doi: 10.1016/j.bbadis.2014.06.019.

25. Xu X., Zhang X., Zhang Y., Wang Z. Curcumin suppresses the malignancy of non-small cell lung cancer by modulating the circ-PRKCA/miR-384/ITGB1 pathway. Biomed Pharmacother. 2021 Jun;138:111439. doi: 10.1016/j.biopha.2021.111439.

26. Kunnumakkara A.B., Diagaradjane P., Anand P., Harikumar K. B., Deorukhkar A., Gelovani J. et al. Curcumin sensitizes human colorectal cancer to capecitabine by modulation of cyclin D1, COX-2, MMP-9, VEGF and CXCR4 expression in an orthotopic mouse model.Int J Cancer. 2009 Nov 1;125(9):2187-97. doi: 10.1002/ijc.24593.

27. Aedo-Aguilera V., Carrillo-Beltrán D., Calaf G. M., Muñoz J. P., Guerrero N., Osorio J. C. et al. Curcumin decreases epithelial-mesenchymal transition by a Pirin-dependent mechanism in cervical cancer cells. Oncol Rep. 2019 Nov;42(5):2139-2148. doi: 10.3892/or.2019.7288.

28. Babaei G., Aziz S. G., Jaghi N. Z.Z. EMT, cancer stem cells and autophagy; The three main axes of metastasis. Biomed Pharmacother. 2021 Jan;133:110909. doi: 10.1016/j.biopha.2020.110909.

29. Siddhartha R., Garg M. Molecular and clinical insights of matrix metalloproteinases into cancer spread and potential therapeutic interventions. Toxicol Appl Pharmacol. 2021 Sep 1;426:115593. doi: 10.1016/j.taap.2021.115593.

30. Liang Y., Kong D., Zhang Y., Li S., Li Y., Dong L. et al. Curcumin inhibits the viabИЛity, migration and invasion of papИЛlary thyroid cancer cells by regulating the miR-301a-3p/STAT3 axis. Exp Ther Med. 2021 Aug;22(2):875. doi: 10.3892/etm.2021.10307.

31. Cai J., Sun H., Zheng B., Xie M., Xu C., Zhang G. et al. Curcumin attenuates lncRNA H19-induced epithelial-mesenchymal transition in tamoxifen-resistant breast cancer cells. Mol Med Rep. 2021 Jan;23(1):13. doi: 10.3892/mmr.2020.11651.

32. Yin S., Du W., Wang F., Han B., Cui Y., Yang D. et al. MicroRNA-326 sensitizes human glioblastoma cells to curcumin via the SHH/GLI1 signaling pathway. Cancer Biol Ther. 2018 Apr 3;19(4):260-270. doi: 10.1080/15384047.2016.1250981.

33. Choe S.R., Kim Y. N., Park C. G., Cho K. H., Cho D. Y., Lee H. Y. RCP induces FAK phosphorylation and ovarian cancer cell invasion with inhibition by curcumin. Exp Mol Med. 2018 Apr 27;50(4):1-10. doi: 10.1038/s12276-018-0078-1.

34. Buhrmann C., Kraehe P., Lueders C., Shayan P., Goel A., Shakibaei M. Curcumin suppresses crosstalk between colon cancer stem cells and stromal fibroblasts in the tumor microenvironment: potential role of EMT. PLoS One. 2014 Sep 19;9(9): e107514. doi: 10.1371/journal.pone.0107514.

35. Tyagi P., Singh M., Kumari H., Kumari A., Mukhopadhyay K. Bactericidal activity of curcumin I is associated with damaging of bacterial membrane. PLoS One. 2015 Mar 26;10(3): e0121313. doi: 10.1371/journal.pone.0121313.

36. Zheng D., Huang C., Huang H., Zhao Y., Khan M. R.U., Zhao H. er al. Antibacterial Mechanism of Curcumin: A Review. Chem Biodivers. 2020 Aug;17(8): e2000171. doi: 10.1002/cbdv.202000171.

37. Adamczak A., Ożarowski M., Karpiński T. M. Curcumin, a Natural Antimicrobial Agent with Strain-Specific Activity. Pharmaceuticals (Basel). 2020 Jul 16;13(7):153. doi: 10.3390/ph13070153.

38. Mathew D., Hsu W.-L. Antiviral potential of curcumin. J. Funct. Foods. 2018; (40):692-699. doi: 10.1016/j.jff.2017.12.017.

39. Balasubramanian A., ilankatta R., Teramoto T., Sajith A. M., Nwulia E., Kulkarni A. et al. Inhibition of dengue virus by curcuminoids. Antiviral Res. 2019 Feb;162:71-78. doi: 10.1016/j.antiviral.2018.12.002.

40. Jeong E.H., Vaidya B., Cho S. Y., Park M. A., Kaewintajuk K., Kim S. R. et al. Identification of regulators of the early stage of viral hemorrhagic septicemia virus infection during curcumin treatment. Fish Shellfish Immunol. 2015 Jul;45(1):184-93. doi: 10.1016/j.fsi.2015.03.042.

41. Ferreira V.H., Nazli A., Dizzell S. E., Mueller K., Kaushic C. The anti-inflammatory activity of curcumin protects the genital mucosal epithelial barrier from disruption and blocks replication of HIV-1 and HSV-2. PLoS One. 2015 Apr 9;10(4): e0124903. doi: 10.1371/journal.pone.0124903.

42. Li H., Zhong C., Wang Q., Chen W., Yuan Y. Curcumin is an APE1 redox inhibitor and exhibits an antiviral activity against KSHV replication and pathogenesis. Antiviral Res. 2019 Jul;167:98-103. doi: 10.1016/j.antiviral.2019.04.011.

43. Mounce B.C., Cesaro T., Carrau L., Vallet T., Vignuzzi M. Curcumin inhibits Zika and chikungunya virus infection by inhibiting cell binding. Antiviral Res. 2017 Jun;142:148-157. doi: 10.1016/j.antiviral.2017.03.014.

44. Teymouri M., Pirro M., Johnston T. P., Sahebkar A. Curcumin as a multifaceted compound against human papИЛloma virus infection and cervical cancers: A review of chemistry, cellular, molecular, and preclinical features. Biofactors. 2017 May 6;43(3):331-346. doi: 10.1002/biof.1344.

45. Babaei F., Nassiri-Asl M., Hosseinzadeh H. Curcumin (a constituent of turmeric): New treatment option against COVID-19. Food Sci Nutr. 2020 Sep 6;8(10):5215-5227. doi: 10.1002/fsn3.1858.

46. Subhan F., KhalИЛ A.A.K., Zeeshan M., Haider A., Tauseef I., Haleem S. K. Curcumin: From Ancient Spice to Modern Anti-Viral Drug in COVID-19 Pandemic. Life Sci. 2020; (1): 69-73. doi: 10.37185/LnS.1.1.137.

47. Thimmulappa R.K., Mudnakudu-Nagaraju K.K., Shivamallu C., Subramaniam K. J.T., Radhakrishnan A., Bhojraj S. et al. Antiviral and immunomodulatory activity of curcumin: A case for prophylactic therapy for COVID-19. Heliyon. 2021 Feb;7(2): e06350. doi: 10.1016/j.heliyon.2021.e06350.

48. Laurindo L.F., de Carvalho G. M., de Oliveira Zanuso B., Figueira M. E., Direito R., de Alvares Goulart R. et al. Curcumin-Based Nanomedicines in the Treatment of Inflammatory and Immunomodulated Diseases: An Evidence-Based Comprehensive Review. Pharmaceutics. 2023 Jan 10;15(1):229. doi: 10.3390/pharmaceutics15010229.

49. Khanra S., Kumar Y. P., Dash J., Banerjee R. In vitro screening of known drugs identified by scaffold hopping techniques shows promising leishmanicidal activity for suramin and netilmicin. BMC Res Notes. 2018 May 21;11(1):319. doi: 10.1186/s13104-018-3446-y.

50. Fattahi Bafghi A., Haghirosadat B. F., Yazdian F., Mirzaei F., Pourmadadi M., Pournasir F. et al. A novel delivery of curcumin by the efficient nanoliposomal approach against Leishmania major. Prep Biochem Biotechnol. 2021;51(10):990-997. doi: 10.1080/10826068.2021.1885045.

51. Mallo N., Lamas J., Sueiro R. A., Leiro J. M. Molecular Targets Implicated in the Antiparasitic and Anti-Inflammatory Activity of the Phytochemical Curcumin in Trichomoniasis. Molecules. 2020 Nov 14;25(22):5321. doi: 10.3390/molecules25225321.

52. Rangel-Castañeda I.A., Hernández-Hernández J.M., Pérez-Rangel A., González-Pozos S., Carranza-Rosales P., Charles-Niño C.L. et al. Amoebicidal activity of curcumin on Entamoeba histolytica trophozoites. J Pharm Pharmacol. 2018 Mar;70(3):426-433. doi: 10.1111/jphp.12867.

53. Gutiérrez-Gutiérrez F., Palomo-Ligas L., Hernández-Hernández J.M., Pérez-Rangel A., Aguayo-Ortiz R., Hernández-Campos A. et al. Curcumin alters the cytoskeleton and microtubule organization on trophozoites of Giardia lamblia. Acta Trop. 2017 Aug;172:113-121. doi: 10.1016/j.actatropica.2017.04.027.

54. El-Shafey A.A.M., Hegab M. H.A., Seliem M. M.E., Barakat A. M.A., Mostafa N. E., Abdel-Maksoud H.A. et al. Curcumin@metal organic frameworks nano-composite for treatment of chronic toxoplasmosis. J Mater Sci Mater Med. 2020 Oct 21;31(11):90. doi: 10.1007/s10856-020-06429-y.

55. Qian W., Wang H., Shan D., Li B., Liu J., Liu Q. Activity of several kinds of drugs against Neospora caninum. Parasitol Int. 2015 Dec;64(6):597-602. doi: 10.1016/j.parint.2015.08.002.

56. Bazh E.K., El-Bahy N. M. In vitro and in vivo screening of anthelmintic activity of ginger and curcumin on Ascaridia galli. Parasitol Res. 2013 Nov;112(11):3679-86. doi: 10.1007/s00436-013-3541-x.

57. El-Bahy N.M., Bazh E. K. Anthelmintic activity of ginger, curcumin, and praziquentel against Raillietina cesticillus (in vitro and in vivo). Parasitol Res. 2015 Jul;114(7):2427-34. doi: 10.1007/s00436-015-4416-0.

58. Novaes R.D., Sartini M. V., Rodrigues J. P., Gonçalves R. V., Santos E. C., Souza R. L. et al. Curcumin Enhances the Anti-Trypanosoma cruzi Activity of Benznidazole-Based Chemotherapy in Acute Experimental Chagas Disease. Antimicrob Agents Chemother. 2016 May 23;60(6):3355-64. doi: 10.1128/AAC.00343-16.

59. Busari Z.A., Dauda K. A., Morenikeji O. A., Afolayan F., Oyeyemi O. T., Meena J. et al. Antiplasmodial Activity and Toxicological Assessment of Curcumin PLGA-Encapsulated Nanoparticles. Front Pharmacol. 2017 Sep 6;8:622. doi: 10.3389/fphar.2017.00622.

60. Samarghandian S., Azimi-Nezhad M., Farkhondeh T., Samini F. Anti-oxidative effects of curcumin on immobИЛization-induced oxidative stress in rat brain, liver and kidney. Biomed Pharmacother. 2017 Mar;87:223-229. doi: 10.1016/j.biopha.2016.12.105.

61. Jagetia G.C., Rajanikant G. K. Curcumin Stimulates the Antioxidant Mechanisms in Mouse Skin Exposed to Fractionated γ-Irradiation. Antioxidants (Basel). 2015 Jan 13;4(1):25-41. doi: 10.3390/antiox4010025.

62. Meshkibaf M.H., Maleknia M., Noroozi S. Effect of curcumin on gene expression and protein level of methionine sulfoxide reductase A (MSRA), SOD, CAT and GPx in Freund’s adjuvant inflammation-induced male rats. J Inflamm Res. 2019 Sep 3;12:241-249. doi: 10.2147/JIR.S212577.

63. Haryuna T.S., Munir D., Maria A., Bashiruddin J. The Antioxidant Effect of Curcumin on Cochlear Fibroblasts in Rat Models of Diabetes Mellitus. Iran J Otorhinolaryngol. 2017 Jul;29(93):197-202.

64. Barzegar A., Moosavi-Movahedi A. A.Intracellular ROS protection efficiency and free radical-scavenging activity of curcumin. PLoS One. 2011;6(10): e26012. doi: 10.1371/journal.pone.0026012.

65. Chen S., Wu J., Tang Q., Xu C., Huang Y., Huang D. et al. Nano-micelles based on hydroxyethyl starch-curcumin conjugates for improved stabИЛity, antioxidant and anticancer activity of curcumin. Carbohydr Polym. 2020 Jan 15;228:115398. doi: 10.1016/j.carbpol.2019.115398.

66. Mohanty C., Sahoo S. K. Curcumin and its topical formulations for wound healing applications. Drug Discov Today. 2017 Oct;22(10):1582-1592. doi: 10.1016/j.drudis.2017.07.001.

67. Sen C.K., Khanna S., GordИЛlo G., Bagchi D., Bagchi M., Roy S. Oxygen, oxidants, and antioxidants in wound healing: an emerging paradigm. Ann N Y Acad Sci. 2002 May;957:239-49. doi: 10.1111/j.1749-6632.2002.tb02920.x.

68. Mohanty C., Das M., Sahoo S. K. Sustained wound healing activity of curcumin loaded oleic acid based polymeric bandage in a rat model. Mol Pharm. 2012 Oct 1;9(10):2801-11. doi: 10.1021/mp300075u.

69. Mohanty C., Acharya S., Mohanty A. K., DИЛnawaz F., Sahoo S. K. Curcumin-encapsulated MePEG/PCL diblock copolymeric micelles: a novel controlled delivery vehicle for cancer therapy. Nanomedicine (Lond). 2010 Apr;5(3):433-49. doi: 10.2217/nnm.10.9.

70. Olczyk P., Mencner Ł., Komosinska-Vassev K. The role of the extracellular matrix components in cutaneous wound healing. Biomed Res Int. 2014;2014:747584. doi: 10.1155/2014/747584.

71. Ebaid H., Ahmed O. M., Mahmoud A. M., Ahmed R. R. Limiting prolonged inflammation during proliferation and remodeling phases of wound healing in streptozotocin-induced diabetic rats supplemented with camel undenatured whey protein. BMC Immunol. 2013 Jul 25;14:31. doi: 10.1186/1471-2172-14-31.

72. Mohanty C., Das M., Sahoo S. K. Emerging role of nanocarriers to increase the solubИЛity and bioavaИЛabИЛity of curcumin. Expert Opin Drug Deliv. 2012 Nov;9(11):1347-64. doi: 10.1517/17425247.2012.724676.

73. Eisenstein E., WИЛliams C. The Treg/Th17 Cell Balance: A New Paradigm for Autoimmunity. Pediatr Res. 2009;65:26-31. doi: 10.1203/PDR.0b013e31819e76c7.

74. Morishima N., Mizoguchi I., Takeda K., Mizuguchi J., Yoshimoto T. TGF-beta is necessary for induction of ИЛ-23R and Th17 differentiation by ИЛ-6 and ИЛ-23. Biochem Biophys Res Commun. 2009 Aug 14;386(1):105-10. doi: 10.1016/j.bbrc.2009.05.140.

75. Li M.O., Wan Y. Y., Sanjabi S., Robertson A. K., Flavell R. A. Transforming growth factor-beta regulation of immune responses. Annu Rev Immunol. 2006;24:99-146. doi: 10.1146/annurev.immunol.24.021605.090737.

76. Alvarez R.H., Kantarjian H. M., Cortes J. E. Biology of platelet-derived growth factor and its involvement in disease. Mayo Clin Proc. 2006 Sep;81(9):1241-57. doi: 10.4065/81.9.1241.

77. Pierce G.F., Mustoe T. A., Altrock B. W., Deuel T. F. Thomason A. Role of platelet-derived growth factor in wound healing. J Cell Biochem. 1991 Apr;45(4):319-26. doi: 10.1002/jcb.240450403.

78. Novo E., Parola M. The role of redox mechanisms in hepatic chronic wound healing and fibrogenesis. Fibrogenesis Tissue Repair. 2012 Jun 6;5(Suppl 1): S4. doi: 10.1186/1755-1536-5-S1-S4.

79. Zhao G., Shi Y., Gong C., Liu T., Nan W., Ma L. et al. Curcumin Exerts Antinociceptive Effects in Cancer-Induced Bone Pain via an Endogenous Opioid Mechanism. Front Neurosci. 2021 Sep 3;15:696861. doi: 10.3389/fnins.2021.696861.

80. Guo G., Peng Y., Xiong B., Liu D., Bu H., Tian X. et al. Involvement of chemokine CXCL11 in the development of morphine tolerance in rats with cancer-induced bone pain. J Neurochem. 2017 May;141(4):553-564. doi: 10.1111/jnc.13919.

81. Sun J., Chen F., Braun C., Zhou Y. Q., Rittner H., Tian Y. K. et al. Role of curcumin in the management of pathological pain. Phytomedicine. 2018 Sep 15;48:129-140. doi: 10.1016/j.phymed.2018.04.045.

82. Banafshe H.R., Hamidi G. A., Noureddini M., Mirhashemi S. M., Mokhtari R., Shoferpour M. Effect of curcumin on diabetic peripheral neuropathic pain: possible involvement of opioid system. Eur J Pharmacol. 2014 Jan 15;723:202-6. doi: 10.1016/j.ejphar.2013.11.033.

83. Minett M.S., Pereira V., Sikandar S., Matsuyama A., Lolignier S., Kanellopoulos A. H. et al. Endogenous opioids contribute to insensitivity to pain in humans and mice lacking sodium channel Nav1.7. Nat Commun. 2015 Dec 4;6:8967. doi: 10.1038/ncomms9967.

84. Mercadante S., Arcuri E., Santoni A. Opioid-Induced Tolerance and Hyperalgesia. CNS Drugs. 2019 Oct;33(10):943-955. doi: 10.1007/s40263-019-00660-0.

85. Zhang J., Wang Y., Qi X. Systemic Rapamycin Attenuates Morphine-Induced Analgesic Tolerance and Hyperalgesia in Mice. Neurochem Res. 2019 Feb;44(2):465-471. doi: 10.1007/s11064-018-2699-0.

86. Garodia P., Hegde M., Kunnumakkara A. B., Aggarwal B. B. Curcumin, inflammation, and neurological disorders: How are they linked? Integr Med Res. 2023 Sep;12(3):100968. doi: 10.1016/j.imr.2023.100968.

87. Ju J., Shin J. Y., Yoon J. J., Yin M., Yoon, M. H. Differential expression of spinal γ-aminobutyric acid and opioid receptors modulates the analgesic effects of intrathecal curcumin on postoperative/inflammatory pain in rats. Pain Med. 2018; 13:82-92. doi: 10.17085/apm.2018.13.1.82.

88. Wu Y., Qin D., Yang H., Fu H. Evidence for the Participation of Acid-Sensing Ion Channels (ASICs) in the Antinociceptive Effect of Curcumin in a Formalin-Induced Orofacial Inflammatory Model. Cell Mol Neurobiol. 2017 May;37(4):635-642. doi: 10.1007/s10571-016-0399-3.

89. Zhi L., Dong L., Kong D., Sun B., Sun Q., Grundy D. et al. Curcumin acts via transient receptor potential vanilloid-1 receptors to inhibit gut nociception and reverses visceral hyperalgesia. Neurogastroenterol Motil. 2013 Jun;25(6): e429-40. doi: 10.1111/nmo.12145.

90. Steen K.H., Reeh P. W. Sustained graded pain and hyperalgesia from harmless experimental tissue acidosis in human skin. Neurosci Lett. 1993 May 14;154(1-2):113-6. doi: 10.1016/0304-3940(93)90184-m.

91. Yeon K.Y., Kim S. A., Kim Y. H., Lee M. K., Ahn D. K., Kim H. J. et al. Curcumin produces an antihyperalgesic effect via antagonism of TRPV1. J Dent Res. 2010 Feb;89(2):170-4. doi: 10.1177/0022034509356169.

92. Barchitta M., Maugeri A., Favara G., Magnano San Lio R., Evola G., Agodi A. et al. Nutrition and Wound Healing: An Overview Focusing on the Beneficial Effects of Curcumin.Int J Mol Sci. 2019 Mar 5;20(5):1119. doi: 10.3390/ijms20051119.

93. Qin S., Huang L., Gong J., Shen S., Huang J., Ren H. et al. Efficacy and safety of turmeric and curcumin in lowering blood lipid levels in patients with cardiovascular risk factors: a meta-analysis of randomized controlled trials. Nutr J. 2017 Oct 11;16(1):68. doi: 10.1186/s12937-017-0293-y.

94. Nishiyama T., Mae T., Kishida H., Tsukagawa M., Mimaki Y., Kuroda M. et al. Curcuminoids and sesquiterpenoids in turmeric (Curcuma longa L.) suppress an increase in blood glucose level in type 2 diabetic KK-Ay mice. J Agric Food Chem. 2005 Feb 23;53(4):959-63. doi: 10.1021/jf0483873.

95. Kang Q., Chen A. Curcumin suppresses expression of low-density lipoprotein (LDL) receptor, leading to the inhibition of LDL-induced activation of hepatic stellate cells. Br J Pharmacol. 2009 Aug;157(8):1354-67. doi: 10.1111/j.1476-5381.2009.00261.x.

96. Ahmadian M., Suh J. M., Hah N., Liddle C., Atkins A. R., Downes M. et al. PPARγ signaling and metabolism: the good, the bad and the future. Nat Med. 2013 May;19(5):557-66. doi: 10.1038/nm.3159.

97. Hafiane A., Gasbarrino K., Daskalopoulou S. S. The role of adiponectin in cholesterol efflux and HDL biogenesis and metabolism. Metabolism. 2019 Nov;100:153953. doi: 10.1016/j.metabol.2019.153953.

98. Wagner E.M., Basso F., Kim C. S., Amar M. J. A. ABC lipid transporter. AccessScience. 2020 July 2; doi: 10.1036/1097-8542.801530.

99. Bachmeier B.E., Iancu C. M., Killian P. H., Kronski E., Mirisola V., Angelini G. et al. Overexpression of the ATP binding cassette gene ABCA1 determines resistance to Curcumin in M14 melanoma cells. Mol Cancer. 2009 Dec 23;8:129. doi: 10.1186/1476-4598-8-129.

100. Peluso I., Morabito G., Urban L., Ioannone F., Serafini M. Oxidative stress in atherosclerosis development: the central role of LDL and oxidative burst. Endocr Metab Immune Disord Drug Targets. 2012 Dec;12(4):351-60. doi: 10.2174/187153012803832602.

101. Sahebkar A. Are curcuminoids effective C-reactive protein-lowering agents in clinical practice? Evidence from a meta-analysis. Phytother Res. 2014 May;28(5):633-42. doi: 10.1002/ptr.5045.

102. Sahebkar A. Curcuminoids for the management of hypertriglyceridaemia. Nat Rev Cardiol. 2014 Feb;11(2):123. doi: 10.1038/nrcardio.2013.140-c1.

103. Sahebkar A. Low-density lipoprotein is a potential target for curcumin: novel mechanistic insights. Basic Clin Pharmacol Toxicol. 2014 Jun;114(6):437-8. doi: 10.1111/bcpt.12212.

104. Sahebkar A., Chew G. T., Watts G. F. Recent advances in pharmacotherapy for hypertriglyceridemia. Prog Lipid Res. 2014 Oct;56:47-66. doi: 10.1016/j.plipres.2014.07.002.

105. Panahi Y., Ahmadi Y., Teymouri M., Johnston T. P., Sahebkar A. Curcumin as a potential candidate for treating hyperlipidemia: A review of cellular and metabolic mechanisms. J Cell Physiol. 2018 Jan;233(1):141-152. doi: 10.1002/jcp.25756.

106. Zou J., Zhang S., Li P., Zheng X., Feng D. Supplementation with curcumin inhibits intestinal cholesterol absorption and prevents atherosclerosis in high-fat diet-fed apolipoprotein E knockout mice. Nutr Res. 2018 Aug;56:32-40. doi: 10.1016/j.nutres.2018.04.017.

107. Feng D., Zou J., Zhang S., Li X., Lu M. Hypocholesterolemic Activity of Curcumin Is Mediated by Down-regulating the Expression of Niemann-Pick C1-like 1 in Hamsters. J Agric Food Chem. 2017 Jan 18;65(2):276-280. doi: 10.1021/acs.jafc.6b04102.

108. Kim M., Kim Y. Hypocholesterolemic effects of curcumin via up-regulation of cholesterol 7a-hydroxylase in rats fed a high fat diet. Nutr Res Pract. 2010 Jun;4(3):191-5. doi: 10.4162/nrp.2010.4.3.191.

109. Fan A.Y., Wu X. J., Shao A. M., Chen G. Effects of curcumin on blood lipid, inflammatory factors and endothelial function in atherosclerotic rabbits. Sci. Technol. Tradit. Chin. Med. 2020; 27:373-375.

110. Zhang T., He Q., Liu Y., Chen Z., Hu H. Efficacy and Safety of Curcumin Supplement on Improvement of Insulin Resistance in People with Type 2 Diabetes Mellitus: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Evid Based Complement Alternat Med. 2021 Aug 24;2021:4471944. doi: 10.1155/2021/4471944.

111. Song E.K., Lee Y. R., Kim Y. R., Yeom J. H., Yoo C. H., Kim H. K. et al. NAADP mediates insulin-stimulated glucose uptake and insulin sensitization by PPARγ in adipocytes. Cell Rep. 2012 Dec 27;2(6):1607-19. doi: 10.1016/j.celrep.2012.10.018.

112. Kharitonenkov A., Shiyanova T. L., Koester A., Ford A. M., Micanovic R., Galbreath E. J. et al. FGF-21 as a novel metabolic regulator. J Clin Invest. 2005 Jun;115(6):1627-35. doi: 10.1172/JCI23606.

113. Fisher F.M., Estall J. L., Adams A. C., Antonellis P. J., Bina H. A., Flier J. S. et al.Integrated regulation of hepatic metabolism by fibroblast growth factor 21 (FGF21) in vivo. Endocrinology. 2011 Aug;152(8):2996-3004. doi: 10.1210/en.2011-0281.

114. Maheswaraiah A., Rao L. J., Naidu K. A. Anti-platelet activity of water dispersible curcuminoids in rat platelets. Phytother Res. 2015 Mar;29(3):450-8. doi: 10.1002/ptr.5274.

115. Srivastava K.C., Bordia A., Verma S. K. Curcumin, a major component of food spice turmeric (Curcuma longa) inhibits aggregation and alters eicosanoid metabolism in human blood platelets. Prostaglandins Leukot Essent Fatty Acids. 1995 Apr;52(4):223-7. doi: 10.1016/0952-3278(95)90040-3.

116. Gilmer J.F., Murphy M. A., Shannon J. A., Breen C. G., Ryder S. A., Clancy J. M. Single oral dose study of two isosorbide-based aspirin prodrugs in the dog. J Pharm Pharmacol. 2003 Oct;55(10):1351-7. doi: 10.1211/0022357022007.

117. Kamath S., Blann A. D., Lip G. Y. Platelets and atrial fibrillation. Eur Heart J. 2001 Dec;22(24):2233-42. doi: 10.1053/euhj.2001.2612.

118. Gkaliagkousi E., Ritter J., Ferro A. Platelet-derived nitric oxide signaling and regulation. Circ Res. 2007 Sep 28;101(7):654-62. doi: 10.1161/CIRCRESAHA.107.158410.

119. Pignatelli P., Di Santo S., Buchetti B., Sanguigni V., Brunelli A., Violi F. Polyphenols enhance platelet nitric oxide by inhibiting protein kinase C-dependent NADPH oxidase activation: effect on platelet recruitment. FASEB J. 2006 Jun;20(8):1082-9. doi: 10.1096/fj.05-5269com.

120. Golino P., Piscione F., Willerson J. T., Cappelli-Bigazzi M., Focaccio A., Villari B. et al. Divergent effects of serotonin on coronary-artery dimensions and blood flow in patients with coronary atherosclerosis and control patients. N Engl J Med. 1991 Mar 7;324(10):641-8. doi: 10.1056/NEJM199103073241001.

121. Satoh K., Yatomi Y., Ozaki Y. A new method for assessment of an anti-5HT(2A) agent, sarpogrelate hydrochloride, on platelet aggregation. J Thromb Haemost. 2006 Feb;4(2):479-81. doi: 10.1111/j.1538-7836.2006.01757.x.

122. Freedman J.E., Loscalzo J., Barnard M. R., Alpert C., Keaney J. F., Michelson A. D. Nitric oxide released from activated platelets inhibits platelet recruitment. J Clin Invest. 1997 Jul 15;100(2):350-6. doi: 10.1172/JCI119540.

123. Freedman J.E., Parker C. 3rd, Li L., Perlman J. A., Frei B., Ivanov V. et al. Select flavonoids and whole juice from purple grapes inhibit platelet function and enhance nitric oxide release. Circulation. 2001 Jun 12;103(23):2792-8. doi: 10.1161/01.cir.103.23.2792.

124. Kim D.C., Ku S. K., Bae J. S. Anticoagulant activities of curcumin and its derivative. BMB Rep. 2012 Apr;45(4):221-6. doi: 10.5483/bmbrep.2012.45.4.221.

125. Davie E.W., Fujikawa K., Kisiel W. The coagulation cascade: initiation, maintenance, and regulation. Biochemistry. 1991 Oct 29;30(43):10363-70. doi: 10.1021/bi00107a001.

126. Monroe D.M., Hoffman M., Roberts H. R. Platelets and thrombin generation. Arterioscler Thromb Vasc Biol. 2002 Sep 1;22(9):1381-9. doi: 10.1161/01.atv.0000031340.68494.34.

127. Marton L.T., Barbalho S. M., Sloan K. P., Sloan L. A., Goulart R. A., Araújo A. C. et all. Curcumin, autoimmune and inflammatory diseases: going beyond conventional therapy - a systematic review. Crit Rev Food Sci Nutr. 2022;62(8):2140-2157. doi: 10.1080/10408398.2020.1850417.

128. Smith E.M., Gregg M., Hashemi F., Schott L., Hughes T. K. Corticotropin Releasing Factor (CRF) activation of NF-kappaB-directed transcription in leukocytes. Cell Mol Neurobiol. 2006 Jul-Aug;26(4-6):1021-36. doi: 10.1007/s10571-006-9040-1.

129. Yu L., Mohamed A. J., Simonson O. E., Vargas L., Blomberg K. E., Björkstrand B. et al. Proteasome-dependent autoregulation of Bruton tyrosine kinase (Btk) promoter via NF-kappaB. Blood. 2008 May 1;111(9):4617-26. doi: 10.1182/blood-2007-10-121137.

130. Peng Y., Ao M., Dong B., Jiang Y., Yu L., Chen Z. et al. Anti-Inflammatory Effects of Curcumin in the Inflammatory Diseases: Status, Limitations and Countermeasures. Drug Des Devel Ther. 2021 Nov 2;15:4503-4525. doi: 10.2147/DDDT.S327378

131. Hwa J., Martin K. The Eicosanoids: Prostaglandins, Thromboxanes, Leukotrienes, & Related Compounds. In: Katzung BG. eds. Basic & Clinical Pharmacology. McGraw-Hill Education. 2017; 14е.

132. Kalinski P. Regulation of immune responses by prostaglandin E2. J Immunol. 2012 Jan 1;188(1):21-8. doi: 10.4049/jimmunol.1101029.

133. Chai Y.S., Chen Y. Q., Lin S. H., Xie K., Wang C. J., Yang Y. Z. et al. Curcumin regulates the differentiation of naïve CD4+T cells and activates IL-10 immune modulation against acute lung injury in mice. Biomed Pharmacother. 2020 May;125:109946. doi: 10.1016/j.biopha.2020.109946.

134. Liu Z., Ying Y. The Inhibitory Effect of Curcumin on Virus-Induced Cytokine Storm and Its Potential Use in the Associated Severe Pneumonia. Front Cell Dev Biol. 2020 Jun 12;8:479. doi: 10.3389/fcell.2020.00479.

135. Hedi H., Norbert G. 5-Lipoxygenase Pathway, Dendritic Cells, and Adaptive Immunity. J Biomed Biotechnol. 2004;2004(2):99-105. doi: 10.1155/S1110724304310041.

136. Banik U., Parasuraman S., Adhikary A. K., Othman N. H. Curcumin: the spicy modulator of breast carcinogenesis. J Exp Clin Cancer Res. 2017 Jul 19;36(1):98. doi: 10.1186/s13046-017-0566-5.

137. Green S.J., Mellouk S., Hoffman S. L., Meltzer M. S., Nacy C. A. Cellular mechanisms of nonspecific immunity to intracellular infection: cytokine-induced synthesis of toxic nitrogen oxides from L-arginine by macrophages and hepatocytes. Immunol Lett. 1990 Aug;25(1-3):15-9. doi: 10.1016/0165-2478(90)90083-3.

138. Wallace J.L., Ianaro A., Flannigan K. L., Cirino G. Gaseous mediators in resolution of inflammation. Semin Immunol. 2015 May;27(3):227-33. doi: 10.1016/j.smim.2015.05.004.

139. Osanai T., Fujiwara N., Saitoh M., Sasaki S., Tomita H., Nakamura M. et al. Relationship between salt intake, nitric oxide and asymmetric dimethylarginine and its relevance to patients with end-stage renal disease. Blood Purif. 2002;20(5):466-8. doi: 10.1159/000063555.

140. Rodríguez Castaño P., Parween S., Pandey A. V. Bioactivity of Curcumin on the Cytochrome P450 Enzymes of the Steroidogenic Pathway.Int J Mol Sci. 2019 Sep 17;20(18):4606. doi: 10.3390/ijms20184606.


Рецензия

Для цитирования:


Шрайнер Е.В., Николайчук К.М., Хавкин А.И., Веременко А.С., Левченко И.Д., Платонова П.Я., Новикова М.Ф., Тумас А.С., Вергунова Е.Е., Лукичев Д.А., Сергеев Д.А., Покушалов Е.А., Кудлай Д.А. Фармакодинамические характеристики куркумина. Экспериментальная и клиническая гастроэнтерология. 2024;(8):291-306. https://doi.org/10.31146/1682-8658-ecg-228-8-291-306

For citation:


Shrainer E.V., Nikolaychuk K.M., Khavkin A.I., Veremenko A.S., Levchenko I.D., Platonova P.Ya., Novikova M.F., Tumas A.S., Vergunova E.E., Lukichev D.A., Sergeev D.A., Pokushalov E.A., Kudlai D.A. Pharmacodynamic characteristics of curcumin. Experimental and Clinical Gastroenterology. 2024;(8):291-306. (In Russ.) https://doi.org/10.31146/1682-8658-ecg-228-8-291-306

Просмотров: 1751


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 1682-8658 (Print)