Preview

Experimental and Clinical Gastroenterology

Advanced search

Catestatin and proinflammatory cytokines as biomarkers of metabolic syndrome in combination with arterial hypertension and obstructive sleep APNEA syndrome in COVID-19 patients

https://doi.org/10.31146/1682-8658-ecg-228-8-105-112

Abstract

Metabolic syndrome (MS) is a group of metabolic disorders with a number of factors that increase cardiovascular risk. Arterial hypertension is one of the components associated with the development of metabolic syndrome, in addition to disorders of carbohydrate metabolism, dyslipidemia and abdominal obesity. Currently, a causal relationship between OSA and MS has been determined, represented by the fact that intermittent hypoxia occurs in OSA, as well as fragmentation of sleep. The transferred coronavirus infection is clearly associated with an increase in the parameters of the lipidogram, as well as the value of the average SAD and DAD per day, the number of complications from the cardiovascular system in patients with hypertension. The aim was to study the characteristics of the level of catestatin and proinflammatory cytokines in patients with metabolic syndrome in combination with arterial hypertension, obstructive sleep apnea syndrome in patients who underwent COVID-19. Materials and methods: The study included 88 male patients with MS and hypertension. Depending on the presence or absence of a history of coronavirus infection, patients were divided into 2 groups: the number of subjects in group 1 (n= 51), in the second group (n=37). All patients with grade 1-3 hypertension, with the achieved target blood pressure level. The age of the subjects was 30-70 years. All patients underwent: collection of complaints and anamnesis, assessment of body mass index (BMI); determination of the lipid spectrum, blood glucose, glomerular filtration rate. The ELISA method determined catestatin, interleukins 1, 6, and tumor necrosis factor alpha. Instrumental studies were carried out: cardiorespiratory monitoring. Results: when assessing traditional risk factors, it was revealed: a direct relationship between the level of IL-6 and the stage of hypertension (r=0.90; p=0.0355), as well as the relationship between BMI and episodes of anpoe for more than 40 seconds (r=0.89; p=0.0107). Intra-group correlation analysis of the data revealed a direct statistically significant relationship between IAG and degree of AH (r=0.86; p=0.0184)

About the Authors

S. A. Tokarev
Samara State Medical University of the Ministry of Healthcare of the Russian Federation
Russian Federation


I. V. Gubareva
Samara State Medical University of the Ministry of Healthcare of the Russian Federation
Russian Federation


L. Yu. Shvan
Samara State Medical University of the Ministry of Healthcare of the Russian Federation
Russian Federation


S. G. Kochetkov
Samara State Medical University of the Ministry of Healthcare of the Russian Federation
Russian Federation


G. I. Kiseleva
Samara State Medical University of the Ministry of Healthcare of the Russian Federation
Russian Federation


O. E. Gaberman
Samara State Medical University of the Ministry of Healthcare of the Russian Federation
Russian Federation


Yu. Yu. Vukolova
Samara State Medical University of the Ministry of Healthcare of the Russian Federation
Russian Federation


A. V. Pashentseva
Samara State Medical University of the Ministry of Healthcare of the Russian Federation
Russian Federation


N. V. Savelyeva
Samara State Medical University of the Ministry of Healthcare of the Russian Federation
Russian Federation


References

1. Gubareva E. Yu., Kryukov N. N., Gubareva I. V. Catestatin as a novel marker of cardiovascular risk in systemic hypertension.Russ J Cardiol. 2018, 4 (156): 111-116. doi: 10.15829/1560-4071-2018-4-111-116.@@ Губарева Е. Ю., Крюков Н. Н., Губарева И. В. Катестатин как новый маркер сердечно-сосудистого риска у больных гипертонической болезнью. Российский кардиологический журнал. 2018;(4):111-116. doi: 10.15829/1560-4071-2018-4-111-116.

2. Kingue S., Ngoe C. N., Menanga A. P., Jingi A. M., Noubiap J. J.N., Fesuh B. et al. Prevalence and risk factors of hypertension in urban areas of Cameroon: a nationwide population-based cross-sectional study. J Clin Hypertens. 2015;17(10):819-24. doi: 10.1111/jch.12604.

3. Cepeda, F. X., Virmondes, L., Rodrigues, S., DutraMarques, A. C. B., Toschi-Dias, E., Ferreira-Camargo, F. C., Hussid, M. F., Rondon, M. U., Alves, M. J., & Trombetta, I. C. (2019). Identifying the risk of obstructive sleep apnea in metabolic syndrome patients: Diagnostic accuracy of the Berlin Questionnaire. PLOS One, 44, 48-5.

4. Gaines, J., Vgontzas, A. N., Fernandez-Mendoza, J., & Bixler, E. O. (2018) Obstructive sleep apnea and the metabolic syndrome: The road to clinically meaningful phenotyping, improved prognosis, and personalized treatment. Sleep Medicine Reviews, 42, 211-219. doi: 10.1016/ j.smrv.2018.08.009.

5. Meshcheryakov Yu. V., Gubareva I. V., Gubareva E. Yu., Alekseeva A. Yu. Role of catestatin in development and decompensation of heart failure: a literature review.Russian Journal of Cardiology. 2021;26(3S):4492. (In Russ.) doi: 10.15829/1560-4071-2021-4492.@@ Мещеряков Ю. В., Губарева И. В., Губарева Е. Ю., Алексеева А. Ю. Роль катестатина в развитии и декомпенсации сердечной недостаточности: обзор литературы. Российский кардиологический журнал. 2021;26(3S):4492. doi: 10.15829/1560-4071-2021-4492.

6. Whelton P. K., Carey R. M., Aronow W. S. et al. 2017 ACC/AHA/AAPA/ABC/ACPM/AGS/APhA/ASH/ASPC/NMA/PCNA Guideline for the Prevention, Detection, Evaluation, and Management of High Blood Pressure in Adults: Executive Summary: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. Journal of the American Society of Hypertension. 2018;12(8):579.e571-579.e573.

7. Peres, B. U., Allen, H. A. J., Fox, N., Laher, I., Hanly, P., Skomro, R., Almeida, F., & Ayas, N. T. (2019). Circulating biomarkers to identify cardiometabolic complications in patients with obstructive sleep apnea: A systematic review. Sleep Medicine Reviews, 44, 48-57. doi: 10.1016/j.smrv.2018.12.004.

8. Ezhov M. V., Kukharchuk V. V., Sergienko I. V. et al. Disorders of lipid metabolism. Clinical Guidelines 2023.Russian Journal of Cardiology. 2023;28(5):5471. (In Russ.) doi: 10.15829/1560-4071-2023-5471.@@ Ежов М. В., Кухарчук В. В., Сергиенко И. В. и др. Нарушения липидного обмена. Клинические рекомендации 2023. Российский кардиологический журнал. 2023;28(5):5471. doi: 10.15829/1560-4071-2023-5471.

9. Floras J. S. Hypertension and sleep apnea. Can J Cardiol. 2015;31(7):889-897. doi: 10.1016/j.cjca.2015.05.003.

10. Gonzaga C., Bertolami A., Bertolami M. et al. Obstructive sleep apnea, hypertension and cardiovascular diseases. J Hum Hypertens. 2015;29(12):705-712. doi: 10.1038/jhh.2015.15.

11. Tesfaye B., Haile D., Lake B., Belachew T., Tesfaye T., Abera H. Uncontrolled hypertension and associated factors among adult hypertensive patients on follow-up at Jimma University teaching and specialized hospital: cross-sectional study. Research Reports in Clinical Cardiology. 2017;8:21-9. doi: 10.2147/RRCC.S132126.

12. Ahmed A. M., Nur S. M., Xiaochen Y. Association between obstructive sleep apnea and resistant hypertension: systematic review and meta-analysis. Front Med (Lausanne). 2023 Jun 2;10:1200952. doi: 10.3389/fmed.2023.1200952.

13. Martínez-García M.A., Navarro-Soriano C., Torres G., Barbé F., Caballero-Eraso C., Lloberes P. et al.; on behalf the Spanish Sleep Network. Beyond resistant hypertension. Hypertension. 2018;72:618-624. doi: 10.1161/hypertensionaha.118.11170.

14. Dudenbostel T., Siddiqui M., Gharpure N., Calhoun D. A. Refractory versus resistant hypertension: Novel distinctive phenotypes. J Nat Sci. 2017;3: e430. PMID: 29034321, PMCID: PMC5640321

15. Dudenbostel T., Siddiqui M., Oparil S., Calhoun D. A. Refractory hypertension: a novel phenotype of antihypertensive treatment failure. Hypertension. 2016;67:1085-1092. doi: 10.1161/hypertensionaha.116.06587.

16. Muxfeldt E. S., Margallo V., Costa L. M.S., Guimarães G., Cavalcante A. H., Azevedo J. C.M. et al. Effects of continuous positive airway pressure treatment on clinic and ambulatory blood pressures in patients with obstructive sleep apnea and resistant hypertension: a randomized controlled trial. Hypertension. 2015;65:736-742. doi: 10.1161/hypertensionaha.114.04852.

17. Liu L., Cao Q., Guo Z., Dai Q. Continuous positive airway pressure in patients with obstructive sleep apnea and resistant hypertension: a meta-analysis of randomized controlled trials. J Clin Hypertens (Greenwich). 2016;18:153-158. doi: 10.1111/jch.12639.

18. Fattal D., Hester S., Wendt L. Body weight and obstructive sleep apnea: a mathematical relationship between body mass index and apnea-hypopnea index in veterans. J Clin Sleep Med. 2022 Dec1;18(12):2723-2729. doi: 10.5664/jcsm.10190.

19. Litvin A. Yu., Mikhailova O. O., Elfimova E. M. et al. Obstructive sleep apnea syndrome and arterial hypertension: bidirectional relationship. Consilium Medicum. 2015;17(10):34-39. (in Russ.) doi: 10.26442/2075-1753_2015.10.34-39.

20. Khalyfa A., Zhang C., Khalyfa A. A. et al. Effect on intermittent hypoxia on plasma exosomal micro RNA signature and endothelial function in healthy adults. Sleep. 2016;39(12):2077-90. doi: 10.5665/sleep.6302.

21. Munoz-Hernandez R., Vallejo-Vaz A.J., Sanchez Armengol A. et al. Obstructive sleep apnoea syndrome, endothelial function and markers of endothelialization. Changes after CPAP. PLoS One. 2015;10(3): e0122091. doi: 10.1371/journal.pone.0122091.

22. Kheirandish-Gozal L., Gozal D. Obstructive Sleep Apnea and Inflammation: Proof of Concept Based on Two Illustrative Cytokines.Int J Mol Sci. 2019 Jan 22;20(3):459. doi: 10.3390/ijms20030459.

23. Jin Z. N., Wei Y. X. Meta-analysis of effects of obstructive sleep apnea on the renin-angiotensin-aldosterone system. J Geriatr Cardiol. 2016;13(4):333-43. doi: 10.11909/j.issn.1671-5411.2016.03.020.

24. Dominguez-Garcia S., Castro C., Geribaldi-Doldan N. ADAM17/TACE: A key molecule in brain injury regeneration. Neural Regen. Res. 2019;14(8):1378-1379. doi: 10.4103/1673-5374.253517.

25. Chazova I. E., Zhernakova Yu. V. Diagnosis and treatment of arterial hypertension [Guidelines]. Systemic Hypertension. 2019;16(1):6-31. (in Russ.) doi: 10.26442/2075082X.2019.1.190179.@@ Чазова И. Е., Жернакова Ю. В. от имени экспертов. Клинические рекомендации. Диагностика и лечение артериальной гипертонии. Системные гипертензии. doi: 10.26442/2075082X.2019.1.190179.

26. Solntseva T. D., Sivakova O. A., Chazova I. E. Clinical and diagnostic features of uncontrolled hypertension and including hypertensive crisis. Systemic Hypertension. 2023;20(1):21-28. (In Russ.) doi: 10.38109/2075-082X-2023-1-21-28.@@ Солнцева Т. Д., Сивакова О. А., Чазова И. Е. Клинико-диагностические особенности неконтролируемой артериальной гипертонии, в том числе кризового течения. Системные гипертензии. 2023;20(1):21-28. doi: 10.38109/2075-082X-2023-1-21-28.

27. Boytsov S. A., Balanova Yu.A., Shalnova S. A. et al. Arterial hypertension among individuals of 25-64 years old: prevalence, awareness, treatment and control. By the data from ECCD. Cardiovascular Therapy and Prevention. 2014;13(4):4-14. (In Russ.) doi: 10.15829/1728-8800-2014-4-4-14.@@ Бойцов С. А., Баланова Ю. А., Шальнова С. А. и др. Артериальная гипертония среди лиц 25-64 лет: распространенность, осведомленность, лечение и контроль. По материалам исследования ЭССЕ. Кардиоваскулярная терапия и профилактика. 2014;13(4):4-14. doi: 10.15829/1728-8800-2014-4-4-14.

28. Global Burden of Metabolic Risk Factors for Chronic Diseases Collaboration. Cardiovascular disease, chronic kidney disease, and diabetes mortality burden of cardiometabolic risk factors from 1980 to 2010: a comparative risk assessment. Lancet Diabetes Endocrinol. 2, 634-647 (2014). doi: 10.1016/s2213-8587(14)70102-0.

29. Kontis V. et al. Regional contributions of six preventable risk factors to achieving the 25 × 25 non-communicable disease mortality reduction target: a modelling study. Lancet Glob. Health 3, e746-e757(2015). doi: 10.1016/s2214-109x(15)00179-5.

30. Walia H. K., Li H., Rueschman M., Bhatt D. L., Patel S. R., Quan S. F. et al. Association of severe obstructive sleep apnea and elevated blood pressure despite antihypertensive medication use. J Clin Sleep Med. (2014)10:835-43. doi: 10.5664/jcsm.3946.

31. Chazova I. E., Chikhladze N. M., Blinova N. V. et al. Eurasian clinical guidelines for the diagnosis and treatment of secondary (symptomatic) forms of arterial hypertension (2022). Eurasian heart journal. 2023;(1):6-65. (In Russ.) doi: 10.38109/2225-1685-2023-1-6-65.@@ Чазова И. Е., Чихладзе Н. М., Блинова Н. В. и др. Евразийские клинические рекомендации по диагностике и лечению вторичных (симптоматических) форм артериальной гипертонии (2022). Евразийский Кардиологический Журнал. 2023;(1):6-65. doi: 10.38109/2225-1685-2023-1-6-65.

32. Hu X., Fan J., Chen S., Yin Y., Zrenner B. The role of continuous positive airway pressure in blood pressure control for patients with obstructive sleep apnea and hypertension: a meta-analysis of randomized controlled trials. J Clin Hypertens (Greenwich). 2015;17(3):215-22. doi: 10.1111/jch.12472.

33. Pengo M. F., Ratneswaran C., Berry M., Kent B. D., Kohler M., Rossi G. P. et al. Effect of continuous positive airway pressure on blood pressure variability in patients with obstructive sleep apnea. J Clin Hypertens (Greenwich). 2016;18(11):1180-4. doi: 10.1111/jch.12845.

34. Jehan S., Zizi F., Pandi-Perumal S.R., Wall S., Auguste E., Myers A. K., Jean-Louis G., McFarlane S. I. Obstructive Sleep Apnea and Obesity: Implications for Public Health. Sleep Med Disord. 2017;1(4):00019. Epub 2017 Dec 12. PMID: 29517065; PMCID: PMC5836788.

35. Iftikhar I. H., Valentine C. W., Bittencourt L. R.A., Cohen D. L., Fedson A. C., Gíslason T. et al. Effects of continuous positive airway pressure on blood pressure in patients with resistant hypertension and obstructive sleep apnea: a meta-analysis. J Hypertens. 2014;32:2341-2350. Discussion, p. 2350. doi: 10.1097/hjh.0000000000000372.

36. Litvin A. Yu., Chazova I. E. Uncontrolled hypertension and obstructive sleep apnea: integrated treatment approach. Systemic Hypertension. 2022;19(3):41-47 (in Russ.) doi: 10.38109/2075-082X-2022-3-41-47.@@ Литвин А. Ю., Чазова И. Е. Неконтролируемая артериальная гипертензия и синдром обструктивного апноэ сна: комплексный подход к лечению. Системные гипертензии. 2022;19(3):41-47. doi: 10.38109/2075-082X-2022-3-41-47.

37. The IDF consensus worldwide definition of the metabolic syndrome. Obesity and metabolism. 2005;2(3):47-49. (In Russ.) doi: 10.14341/2071-8713-4854.

38. Bunova S. S., Okhotnikova P. I., Skirdenko Yu.P., Nikolaev N. A., Osipova O. A., Zhernakova N. I. COVID-19 and cardiovascular comorbidity: novel approaches to reduce mortality. Cardiovascular Therapy and Prevention. 2021;20(4):2953. (In Russ.) doi: 10.15829/1728-8800-2021-2953.@@ Бунова С. С., Охотникова П. И., Скирденко Ю. П., Николаев Н. А., Осипова О. А., Жернакова Н. И. COVID-19 и сердечно-сосудистая коморбидность: поиск новых подходов к снижению смертности. Кардиоваскулярная терапия и профилактика. 2021;20(4):2953. doi: 10.15829/1728-8800-2021-2953.


Review

For citations:


Tokarev S.A., Gubareva I.V., Shvan L.Yu., Kochetkov S.G., Kiseleva G.I., Gaberman O.E., Vukolova Yu.Yu., Pashentseva A.V., Savelyeva N.V. Catestatin and proinflammatory cytokines as biomarkers of metabolic syndrome in combination with arterial hypertension and obstructive sleep APNEA syndrome in COVID-19 patients. Experimental and Clinical Gastroenterology. 2024;(8):105-112. (In Russ.) https://doi.org/10.31146/1682-8658-ecg-228-8-105-112

Views: 1102


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1682-8658 (Print)