Preview

Experimental and Clinical Gastroenterology

Advanced search

Influence of nutrition and epigenetics on the development of neurodegenerative diseases in elderly and old people

https://doi.org/10.31146/1682-8658-ecg-228-8-89-95

Abstract

Due to the growing number of elderly and senile people in the world population, there is an increase in the prevalence of neurodegenerative diseases. Alzheimer’s, Parkinson’s, multiple sclerosis, amyotrophic lateral sclerosis are the most common nosologies in this group, which are based on neuronal damage and subsequent death of the corresponding parts of the brain and spinal cord. These patients are characterized by a growing deficit in daily activities, a decrease in the productivity of cognitive functions, followed by the need for constant and long-term care, which is associated with huge economic and social costs to society. At the same time, there are no effective programs for the prevention and treatment of these diseases. In the review of the literature, the authors analyzed the works devoted to neurodegenerative diseases, the role of nutrition, epigenetics as factors in the prevention and slowing down the progression of neurodegeneration processes.

About the Authors

S. V. Bulgakova
Samara State Medical University of the Ministry of Healthcare of the Russian Federation
Russian Federation


D. P. Kurmaev
Samara State Medical University of the Ministry of Healthcare of the Russian Federation
Russian Federation


E. V. Treneva
Samara State Medical University of the Ministry of Healthcare of the Russian Federation
Russian Federation


I. V. Shirolapov
Samara State Medical University of the Ministry of Healthcare of the Russian Federation
Russian Federation


A. S. Bulgakov
Samara State Technical University
Russian Federation


References

1. World Health Organization. Available online at: https://www.who.int/news-room/fact-sheets/detail/ageing-and-health (Accessed: 05.05.2024)

2. Bulgakova S. V., Treneva E. V., Zaharova N. O., Nikolaeva A. V. Biological and chronological aging (literature review). Clinical gerontology. 2020;9-10:9-16. (In Russ.) doi: 10.26347/1607-2499202009-10009-016.@@ Булгакова С. В., Тренева Е. В., Захарова Н. О., Николаева А. В. Биологическое и хронологическое старение (обзор литературы). Клиническая геронтология. 2020;9-10:9-16. doi: 10.26347/1607-2499202009-10009-016. []

3. Milošević M., Arsić A., Cvetković Z. et al. Memorable Food: Fighting Age-Related Neurodegeneration by Precision Nutrition. Front Nutr. 2021;8:688086. doi: 10.3389/fnut.2021.688086.

4. Shirolapov I. V., Zakharov A. V., Smirnova D. A. et al. The Role of the Glymphatic Clearance System in the Mechanisms of the Interactions of the Sleep-Waking Cycle and the Development of Neurodegenerative Processes. Neuroscience and Behavioral Physiology. 2024;54(2):199-204. doi: 10.1007/s11055-024-01585-y.

5. Weyrich A., Jeschek M., Schrapers K. T. et al. Diet changes alter paternally inherited epigenetic pattern in male Wild guinea pigs. Environ Epigen. 2018;4: dvy011. doi: 10.1093/eep/dvy011.

6. Baylin S. B., Jones P. A. Epigenetic determinants of cancer. Cold Spring Harb Perspect Biol. 2016;8: ea019505. doi: 10.1101/cshperspect.a019505.

7. Zhong J., Karlsson O., Wang G. et al. B vitamins attenuate the epigenetic effects of ambient fine particles in a pilot human intervention trial. Proc Natl Acad Sci USA. 2017;114:3503-3508. doi: 10.1073/pnas.1618545114.

8. Bae S., Kamynina E., Farinola A. F. et al. Provision of folic acid for reducing arsenic toxicity in arsenic-exposed children and adults. Cochrane Database Syst Rev. 2017;2017: CD012649. doi: 10.1002/14651858.CD012649.

9. Silva L. B.A.R., Pinheiro-Castro N., Novaes G. M. et al. Bioactive food compounds, epigenetics and chronic disease prevention: Focus on early-life interventions with polyphenols. Food Res Int. 2019;125:108646. doi: 10.1016/j.foodres.2019.108646.

10. Lee W. J., Zhu B. T. Inhibition of DNA methylation by caffeic acid and chlorogenic acid, two common catechol-containing coffee polyphenols. Carcinogenesis. 2006;27:269-77. doi: 10.1093/carcin/bgi206.

11. Rodríguez-Miguel C., Moral R., Escrich R. et al. The role of dietary extra virgin olive oil and corn oil on the alteration of epigenetic patterns in the rat DMBA-induced breast cancer model. PLoS ONE. 2015;10: e0138980. doi: 10.1371/journal.pone.0138980.

12. Chen J., Ying Y., Zhu H. et al. Curcumin-induced promoter hypermethylation of the mammalian target of rapamycin gene in multiple myeloma cells. Oncol Lett. 2019;17:1108-1114. doi: 10.3892/ol.2018.9662.

13. Burdge G. C., Lillycrop K. A. Fatty acids and epigenetics. Curr Opin Clin Nutr Metab Care. 2014;17:156-161. doi: 10.1097/MCO.0000000000000023.

14. Huang Q., Mo M., Zhong Y. et al. The anticancer role of omega-3 polyunsaturated fatty acids was closely associated with the increase in genomic DNA hydroxymethylation. Anticancer Agents Med Chem. 2019;19:330-336. doi: 10.2174/1871520618666181018143026.

15. Ceccarelli V., Valentini V., Ronchetti S. et al. Eicosapentaenoic acid induces DNA demethylation in carcinoma cells through a TET1-dependent mechanism. FASEB J. Published online May 14, 2018. doi: 10.1096/fj.201800245R.

16. Bulgakova S. V., Romanchuk N. P., Pomazanova O. S. Psychoneuroimmunoendocrinology and Immune Homeostasis: Gut-brain Axis, Obesity and Cognitive Function. Bulletin of Science and Practice. 2020;6(12):124-1546. (in Russ.) doi: 10.33619/2414-2948/61/15.@@ Булгакова С. В., Романчук Н. П., Помазанова О. С. Психонейроиммуноэндокринология и иммунный гомеостаз: ось кишечник-головной мозг, ожирение и когнитивные функции. Бюллетень науки и практики. 2020;6(12):124-154. doi: 10.33619/2414-2948/61/15. []

17. Wilkins L. J., Monga M., Miller A. W. Defining dysbiosis for a cluster of chronic diseases. Sci Rep. 2019;9:12918. doi: 10.1038/s41598-019-49452-y.

18. Zinöcker M. K., Lindseth I. A. The Western diet-microbiome-host interaction and its role in metabolic disease. Nutrients. 2018;10:365. doi: 10.3390/nu10030365.

19. Gillette-Guyonnet S., Secher M., Vellas B. Nutrition and neurodegeneration: epidemiological evidence and challenges for future research. Br J Clin Pharmacol. 2013;75:738-755. doi: 10.1111/bcp.12058.

20. Bulgakova S. V., Romanchuk N. P. Immune Homeostasis: New Role of Micro- and Macroelements, Healthy Microbiota. Bulletin of Science and Practice. 2020;6(10):206-2336 (in Russ.) doi: 10.33619/2414-2948/59/22.@@ Булгакова С. В., Романчук Н. П. Иммунный гомеостаз: новая роль микро- и макроэлементов, здоровой микробиоты. Бюллетень науки и практики. 2020;6(10):206-233. doi: 10.33619/2414-2948/59/22. []

21. Fu X., Liu Z., Zhu C. et al. Nondigestible carbohydrates, butyrate, and butyrate-producing bacteria. Crit Rev Food Sci Nutr. 2019;59: S130-152. doi: 10.1080/10408398.2018.1542587.

22. Dalile B., Van Oudenhove L., Vervliet B. et al. The role of short-chain fatty acids in microbiota-gut-brain communication. Nat Rev Gastroenterol Hepatol. 2019;16:461-78. doi: 10.1038/s41575-019-0157-3.

23. Bourassa M. W., Alim I., Bultman S. J. et al. Butyrate, neuroepigenetics and the gut microbiome: can a high fiber diet improve brain health? Neurosci Lett. 2016;625:56-63. doi: 10.1016/j.neulet.2016.02.009.

24. Killingsworth J., Sawmiller D., Shytle R. D. Propionate and Alzheimer’s disease. Front Aging Neurosci. 2020;12:580001. doi: 10.3389/fnagi.2020.580001.

25. Ceppa F. A., Izzo L., Sardelli L. et al. Human gut-microbiota interaction in neurodegenerative disorders and current engineered tools for its modeling. Front Cell Infect Microbiol. 2020;10:297. doi: 10.3389/fcimb.2020.00297.

26. Fulop T., Witkowski J. M., Olivieri F., Larbi A. The integration of inflammaging in age-related diseases. Semin Immunol. 2018;40:17-35. doi: 10.1016/j.smim.2018.09.003.

27. Nagu P., Parashar A., Behl T., Mehta V. Gut microbiota composition and epigenetic molecular changes connected to the pathogenesis of Alzheimer’s disease. J Mol Neurosci. 2021;71:1436-1455. doi: 10.1007/s12031-021-01829-3.

28. Kaur H., Singh Y., Singh S., Singh R. B. Gut microbiome-mediated epigenetic regulation of brain disorder and application of machine learning for multi-omics data analysis. Genome. 2021;64:355-371. doi: 10.1139/gen-2020-0136.

29. Vogt N. M., Kerby R. L., Dill-McFarland K.A. et al. Gut microbiome alterations in Alzheimer’s disease. Sci Rep. 2017;7:13537. doi: 10.1038/s41598-017-13601-y.

30. Chang Y. P., Chiu G. F., Kuo F. C. et al. Eradication of Helicobacter pylori Is Associated with the Progression of Dementia: A Population-Based Study. Gastroenterol Res Pract. 2013;2013:175729. doi: 10.1155/2013/175729.

31. Gao Q., Wang Y., Wang X. et al. Decreased levels of circulating trimethylamine N-oxide alleviate cognitive and pathological deterioration in transgenic mice: a potential therapeutic approach for Alzheimer’s disease. Aging (Albany NY). 2019;11:8642-63. doi: 10.18632/aging.102352.

32. Killinger B. A., Madaj Z., Sikora J. W. et al. The vermiform appendix impacts the risk of developing Parkinson’s disease. Sci Transl Med. 2018;10:5280. doi: 10.1126/scitranslmed.aar5280.

33. Sampson T. The impact of indigenous microbes on Parkinson’s disease. Neurobiol Dis. 2020;135:104426. doi: 10.1016/j.nbd.2019.03.014.

34. Prohurovskaya E. V., Bulgakova S. V., Melikova A. V., Zaкharova N. O. Role of the gut microbiota in the development of parkinson’s disease in the elderly (literature review). Clinical gerontology. 2021;7-8:63-68. (In Russ.) doi: 10.26347/1607-2499202107-08063-068.@@ Прохуровская Е. В., Булгакова С. В., Меликова А. В., Захарова Н. О. Роль микробиоты кишечника в развитии болезни Паркинсона у лиц пожилого и старческого возраста (обзор литературы). Клиническая геронтология. 2021;7-8:63-68. doi: 10.26347/1607-2499202107-08063-068. []

35. van Kessel S. P., Frye A. K., El-Gendy A.O. et al. Gut bacterial tyrosine decarboxylases restrict levels of levodopa in the treatment of Parkinson’s disease. Nat Commun. 2019;10:310. doi: 10.1038/s41467-019-08294-y.

36. Ghosh T. S., Rampelli S., Jeffery I. B. et al. Mediterranean diet intervention alters the gut microbiome in older people reducing frailty and improving health status: the NU-AGE 1-year dietary intervention across five European countries. Gut. 2020;69:1218-1228. doi: 10.1136/gutjnl-2019-319654.

37. Fukutomi R., Ohishi T., Koyama Y. et al. Beneficial effects of epigallocatechin-3-O-gallate, chlorogenic acid, resveratrol, and curcumin on neurodegenerative diseases. Molecules. 2021;26:415. doi: 10.3390/molecules26020415.

38. Sun Z. Z., Li X. Y., Wang S. et al. Bidirectional interactions between curcumin and gut microbiota in transgenic mice with Alzheimer’s disease. Appl Microbiol Biotechnol. 2020;104:3507-15. doi: 10.1007/s00253-020-10461-x.

39. Atlante A., Amadoro G., Bobba A., Latina V. Functional foods: an approach to modulate molecular mechanisms of Alzheimer’s disease. Cells. 2020;9:2347. doi: 10.3390/cells9112347.


Review

For citations:


Bulgakova S.V., Kurmaev D.P., Treneva E.V., Shirolapov I.V., Bulgakov A.S. Influence of nutrition and epigenetics on the development of neurodegenerative diseases in elderly and old people. Experimental and Clinical Gastroenterology. 2024;(8):89-95. (In Russ.) https://doi.org/10.31146/1682-8658-ecg-228-8-89-95

Views: 215


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1682-8658 (Print)