Effects of therapeutic factors on brown adipose tissue in order to correct obesity
https://doi.org/10.31146/1682-8658-ecg-228-8-7-27
Abstract
About the Authors
D. P. KurmaevRussian Federation
S. V. Bulgakova
Russian Federation
E. V. Treneva
Russian Federation
P. Ya. Merzlova
Russian Federation
References
1. Suplotova L. A., Alieva O. O., Dushina T. S., Makarova O. B. Obesity in the elderly: peculiarities of treatment in outpatient practice. Obesity and metabolism. 2023;20(2):140-148. (In Russ.) doi: 10.14341/omet12919.@@ Суплотова Л. А., Алиева О. О., Душина Т. С., Макарова О. Б. Ожирение у пожилых людей: особенности ведения в амбулаторной практике. Ожирение и метаболизм. 2023;20(2):140-148. doi: 10.14341/omet12919.
2. Kim O. T., Drapkina O. M. Obesity epidemic through the prism of evolutionary processes. Cardiovascular Therapy and Prevention. 2022;21(1):3109. (In Russ.) doi: 10.15829/1728-8800-2022-3109.@@ Ким О. Т., Драпкина О. М. Эпидемия ожирения через призму эволюционных процессов. Кардиоваскулярная терапия и профилактика. 2022;21(1):3109. doi: 10.15829/1728-8800-2022-3109.
3. World Health Organization Obesity and Overweight. Available at: https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight (accessed on 28 June 2024)
4. Peng Y., Zhao L., Li M. et al. Plasticity of Adipose Tissues: Interconversion among White, Brown, and Beige Fat and Its Role in Energy Homeostasis. Biomolecules. 2024;14(4):483. doi: 10.3390/biom14040483.
5. Eliashevich S. O., Orekhova A. V., Kontsevaya A. V., Drapkina O. M. The problem of excess sugar consumption: culinary and medical aspects. Cardiovascular Therapy and Prevention. 2024;23(4):3929. (In Russ.) doi: 10.15829/1728-8800-2024-3929.@@ Елиашевич С. О., Орехова А. В., Концевая А. В., Драпкина О. М. Проблема избыточного потребления сахара: кулинарные и медицинские аспекты. Кардиоваскулярная терапия и профилактика. 2024;23(4):3929. doi: 10.15829/1728-8800-2024-3929.
6. Czech M. P. Mechanisms of insulin resistance related to white, beige, and brown adipocytes. Mol Metab. 2020;34:27-42. doi: 10.1016/j.molmet.2019.12.014.
7. Schirinzi V., Poli C., Berteotti C., Leone A. Browning of Adipocytes: A Potential Therapeutic Approach to Obesity. Nutrients. 2023;15(9):2229. doi: 10.3390/nu15092229.
8. Yaribeygi H., Maleki M., Sathyapalan T., Jamialahmadi T., Sahebkar A. Pathophysiology of Physical Inactivity-Dependent Insulin Resistance: A Theoretical Mechanistic Review Emphasizing Clinical Evidence. J Diabetes Res. 2021;2021:7796727. doi: 10.1155/2021/7796727.
9. Drapkina O. M., Kim O. T. Is brown adipose tissue a new target for obesity therapy? Cardiovascular Therapy and Prevention. 2021;20(5):2860. (In Russ.) doi: 10.15829/1728-8800-2021-2860.@@ Драпкина О. М., Ким О. Т. Бурая жировая ткань - новая мишень борьбы с ожирением? Кардиоваскулярная терапия и профилактика. 2021;20(5):2860. doi: 10.15829/1728-8800-2021-2860.
10. Romantsova T. I. Adipose tissue: colors, depots and functions. Obesity and metabolism. 2021;18(3):282-301. (In Russ.) doi: 10.14341/omet12748.@@ Романцова Т. И. Жировая ткань: цвета, депо и функции. Ожирение и метаболизм. 2021;18(3):282-301. doi: 10.14341/omet12748.
11. Timofeev Yu.S., Dzhioeva O. N., Drapkina O. M. Circulating biological markers of obesity: towards a systems approach. Cardiovascular Therapy and Prevention. 2023;22(4):3551. (In Russ.) doi: 10.15829/1728-8800-2023-3551.@@ Тимофеев Ю. С., Джиоева О. Н., Драпкина О. М. Циркулирующие биологические маркеры ожирения: на пути к системному подходу. Кардиоваскулярная терапия и профилактика. 2023;22(4):3551. doi: 10.15829/1728-8800-2023-3551.
12. Kurmaev D. P., Bulgakova S. V., Treneva E. V. Sarcopenic obesity - a current problem of modern geriatrics.Russian Journal of Geriatric Medicine. 2022;(4):228-235. (In Russ.) doi: 10.37586/2686-8636-4-2022-228-235.@@ Курмаев Д. П., Булгакова С. В., Тренева Е. В. Саркопеническое ожирение - актуальная проблема современной гериатрии. Российский журнал гериатрической медицины. 2022;(4):228-235. doi: 10.37586/2686-8636-4-2022-228-235.
13. Samoilova Yu.G., Matveeva M. V., Khoroshunova E. A. et al. Cardiometabolic risk factors in patients with type 2 diabetes and sarcopenia. Cardiovascular Therapy and Prevention. 2024;23(1):3655. (In Russ.) doi: 10.15829/1728-8800-2024-3655.@@ Самойлова Ю. Г., Матвеева М. В., Хорошунова Е. А. и др. Кардиометаболические факторы риска у пациентов с сахарным диабетом 2 типа и саркопенией. Кардиоваскулярная терапия и профилактика. 2024;23(1):3655. doi: 10.15829/1728-8800-2024-3655. []
14. Kurmaev D. P., Bulgakova S. V., Treneva E. V. et al. Nutritional support in a comprehensive program of prevention and treatment of sarcopenia.Russian Journal of Geriatric Medicine. 2023;(1):29-38. (In Russ.) doi: 10.37586/2686-8636-1-2023-29-38.@@ Курмаев Д. П., Булгакова С. В., Тренева Е. В. и др. Нутритивная поддержка в комплексной программе профилактики и лечения саркопении. Российский журнал гериатрической медицины. 2023;(1):29-38. doi: 10.37586/2686-8636-1-2023-29-38.
15. Kurmaev D. P., Bulgakova S. V., Treneva E. V. Bioimpedance analysis of body composition and phase angle for the diagnosis of sarcopenia and frailty (Literature review). Advances in Gerontology. 2022;35(2):294-301. (In Russ.). doi: 10.34922/AE.2022.35.2.014.@@ Курмаев Д. П., Булгакова С. В., Захарова Н. О. Биоимпедансный анализ состава тела и фазовый угол в диагностике саркопении и старческой астении (обзор литературы). Успехи геронтологии. 2022;35(2):294-301. doi: 10.34922/AE.2022.35.2.014.
16. Sheberova E. V., Silanteva N. K., Agababian T. A. et al. Role of computed tomography in sarcopenia detection. Siberian Journal of Oncology. 2023;22(3):125-133. (In Russ.) doi: 10.21294/1814-4861-2023-22-3-125-133.@@ Шеберова Е. В., Силантьева Н. К., Агабабян Т. А. и др. Роль компьютерной томографии в диагностике саркопении. Сибирский онкологический журнал. 2023;22(3):125-133. doi: 10.21294/1814-4861-2023-22-3-125-133.
17. Bulgakova S. V., Kurmaev D. P., Silyutina M. V. et al. The contribution of the endocrine system to the development of osteoporosis in the elderly and senile (review). Research Results in Biomedicine. 2021;7(3):308-321. (In Russ.) doi: 10.18413/2658-6533-2021-7-3-0-9.@@ Булгакова С. В., Курмаев Д. П., Силютина М. В. и др. Вклад эндокринной системы в развитие остеопороза у лиц пожилого и старческого возраста (обзор). Научные результаты биомедицинских исследований. 2021;7(3):308-321. doi: 10.18413/2658-6533-2021-7-3-0-9.
18. Kokov A. N., Brel N. K., Masenko V. L. et al. Quantitative assessment of visceral adipose depot in patients with ischemic heart disease by using of modern tomographic methods.Complex Issues of Cardiovascular Diseases. 2017;(3):113-119. (In Russ.) doi: 10.17802/2306-1278-2017-6-3-113-119.@@ Коков А. Н., Брель Н. К., Масенко В. Л. и др. Количественная оценка висцерального жирового депо у больных ишемической болезнью сердца с использованием современных томографических методик. Комплексные проблемы сердечно-сосудистых заболеваний. 2017;(3):113-119. doi: 10.17802/2306-1278-2017-6-3-113-119.
19. Brel N. K., Kokov A. N., Gruzdeva O. V. Advantages and disadvantages of different methods for diagnosis of visceral obesity. Obesity and metabolism. 2018;15(4):3-8. (In Russ.) doi: 10.14341/omet9510.@@ Брель Н. К., Коков А. Н., Груздева О. В. Достоинства и ограничения различных методов диагностики висцерального ожирения. Ожирение и метаболизм. 2018;15(4):3-8. doi: 10.14341/omet9510.
20. Machado S. A., Pasquarelli-do-Nascimento G., da Silva D. S. et al. Browning of the white adipose tissue regulation: new insights into nutritional and metabolic relevance in health and diseases. Nutr Metab (Lond). 2022;19(1):61. doi: 10.1186/s12986-022-00694-0.
21. Auger C., Kajimura S. Adipose Tissue Remodeling in Pathophysiology. Annu Rev Pathol. 2023;18:71-93. doi: 10.1146/annurev-pathol-042220-023633.
22. Blackwell J. A., Stanford K. I. Exercise-induced intertissue communication: adipose tissue and the heart. Curr Opin Physiol. 2023;31:100626. doi: 10.1016/j.cophys.2022.100626.
23. Longo M., Zatterale F., Naderi J. et al. Adipose Tissue Dysfunction as Determinant of Obesity-Associated Metabolic Complications.Int J Mol Sci. 2019;20(9):2358. doi: 10.3390/ijms20092358.
24. Galgani J. E., Moro C., Ravussin E. Metabolic flexibility and insulin resistance. Am J Physiol Endocrinol Metab. 2008;295(5): E1009-E1017. doi: 10.1152/ajpendo.90558.2008.
25. Scheel A. K., Espelage L., Chadt A. Many Ways to Rome: Exercise, Cold Exposure and Diet-Do They All Affect BAT Activation and WAT Browning in the Same Manner?.Int J Mol Sci. 2022;23(9):4759. doi: 10.3390/ijms23094759.
26. Kahn B. B., Flier J. S. Obesity and insulin resistance. J Clin Invest. 2000;106(4):473-481. doi: 10.1172/JCI10842.
27. Priest C., Tontonoz P.Inter-organ cross-talk in metabolic syndrome. Nat Metab. 2019;1(12):1177-1188. doi: 10.1038/s42255-019-0145-5.
28. Cheung B. M., Cheung T. T., Samaranayake N. R. Safety of antiobesity drugs. Ther Adv Drug Saf. 2013;4(4):171-181. doi: 10.1177/2042098613489721.
29. Fabbrini E., Yoshino J., Yoshino M. et al. Metabolically normal obese people are protected from adverse effects following weight gain. J Clin Invest. 2015;125(2):787-795. doi: 10.1172/JCI78425.
30. Stanford K. I., Middelbeek R. J., Goodyear L. J. Exercise Effects on White Adipose Tissue: Beiging and Metabolic Adaptations [published correction appears in Diabetes. 2015 Sep;64(9):3334. doi: 10.2337/db15-er09]. Diabetes. 2015;64(7):2361-2368. doi: 10.2337/db15-0227.
31. Hall K. D., Kahan S. Maintenance of Lost Weight and Long-Term Management of Obesity. Med Clin North Am. 2018;102(1):183-197. doi: 10.1016/j.mcna.2017.08.012.
32. Rubino D. M., Greenway F. L., Khalid U. et al. Effect of Weekly Subcutaneous Semaglutide vs Daily Liraglutide on Body Weight in Adults With Overweight or Obesity Without Diabetes: The STEP 8 Randomized Clinical Trial. JAMA. 2022;327(2):138-150. doi: 10.1001/jama.2021.23619.
33. Wilding J. P.H., Batterham R. L., Calanna S. et al. Once-Weekly Semaglutide in Adults with Overweight or Obesity. N Engl J Med. 2021;384(11):989-1002. doi: 10.1056/NEJMoa2032183.
34. Maurer S., Harms M., Boucher J. The colorful versatility of adipocytes: white-to-brown transdifferentiation and its therapeutic potential in humans. FEBS J. 2021;288(12):3628-3646. doi: 10.1111/febs.15470.
35. Moriya K., Arnold J., LeBlanc J. Shivering and nonshivering thermogenesis in exercised cold-deacclimated rats. Eur J Appl Physiol Occup Physiol. 1988;57(4):467-473. doi: 10.1007/BF00417995.
36. Prunet-Marcassus B., Cousin B., Caton D., André M., Pénicaud L., Casteilla L. From heterogeneity to plasticity in adipose tissues: site-specific differences. Exp Cell Res. 2006;312(6):727-736. doi: 10.1016/j.yexcr.2005.11.021.
37. Morrison S. F., Madden C. J., Tupone D. Central control of brown adipose tissue thermogenesis. Front Endocrinol (Lausanne). 2012;3(5):5. doi: 10.3389/fendo.2012.00005.
38. Mota-Rojas D., Ghezzi M. D., Hernández-Ávalos I., et al. Hypothalamic Neuromodulation of Hypothermia in Domestic Animals. Animals (Basel). 2024;14(3):513. doi: 10.3390/ani14030513.
39. Oka T. Stress-induced hyperthermia and hypothermia. Handb Clin Neurol. 2018;157:599-621. doi: 10.1016/B978-0-444-64074-1.00035-5.
40. Nagashima K., Nakai S., Tanaka M., Kanosue K. Neuronal circuitries involved in thermoregulation. Auton Neurosci. 2000;85(1-3):18-25. doi: 10.1016/S1566-0702(00)00216-2.
41. Macht M. B., Kuhn R. A. Responses to thermal stimuli mediated through the isolated spinal cord. Arch Neurol Psychiatry. 1948;59(6):754-778. doi: 10.1001/archneurpsyc.1948.02300410065004.
42. Brück K. (1989). Thermal Balance and the Regulation of Body Temperature. In: Schmidt, R.F., Thews, G. (eds) Human Physiology. Springer, Berlin, Heidelberg. doi: 10.1007/978-3-642-73831-9_25.
43. MacKenzie M.A., Hermus A. R., Wollersheim H. C. et al. Poikilothermia in man: pathophysiology and clinical implications. Medicine (Baltimore). 1991;70(4):257-268. doi: 10.1097/00005792-199107000-00003.
44. Ko H. Y., Huh S. (2021). Thermoregulatory Impairment. In: Handbook of Spinal Cord Injuries and Related Disorders. Springer, Singapore. doi: 10.1007/978-981-16-3679-0_30.
45. Perez L. C., Perez L. T., Nene Y., Umpierrez G. E., Davis G. M., Pasquel F. J.Interventions associated with brown adipose tissue activation and the impact on energy expenditure and weight loss: A systematic review. Front Endocrinol (Lausanne). 2022;13:1037458. doi: 10.3389/fendo.2022.1037458.
46. Goodpaster B. H., Sparks L. M. Metabolic Flexibility in Health and Disease. Cell Metab. 2017;25(5):1027-1036. doi: 10.1016/j.cmet.2017.04.015.
47. Ziqubu K., Mazibuko-Mbeje S.E., Mthembu S. X.H. et al. Anti-Obesity Effects of Metformin: A Scoping Review Evaluating the Feasibility of Brown Adipose Tissue as a Therapeutic Target.Int J Mol Sci. 2023;24(3):2227. doi: 10.3390/ijms24032227.
48. Lee K. Y., Luong Q., Sharma R., Dreyfuss J. M., Ussar S., Kahn C. R. Developmental and functional heterogeneity of white adipocytes within a single fat depot. EMBO J. 2019;38(3): e99291. doi: 10.15252/embj.201899291.
49. Gesta S., Tseng Y. H., Kahn C. R. Developmental origin of fat: tracking obesity to its source [published correction appears in Cell. 2008 Oct 17;135(2):366]. Cell. 2007;131(2):242-256. doi: 10.1016/j.cell.2007.10.004.
50. Bryant N. J., Govers R., James D. E. Regulated transport of the glucose transporter GLUT4. Nat Rev Mol Cell Biol. 2002;3(4):267-277. doi: 10.1038/nrm782.
51. Abel E. D., Peroni O., Kim J. K. et al. Adipose-selective targeting of the GLUT4 gene impairs insulin action in muscle and liver. Nature. 2001;409(6821):729-733. doi: 10.1038/35055575.
52. Minokoshi Y., Kahn C. R., Kahn B. B. Tissue-specific ablation of the GLUT4 glucose transporter or the insulin receptor challenges assumptions about insulin action and glucose homeostasis. J Biol Chem. 2003;278(36):33609-33612. doi: 10.1074/jbc.R300019200.
53. James D. E., Burleigh K. M., Kraegen E. W. Time dependence of insulin action in muscle and adipose tissue in the rat in vivo. An increasing response in adipose tissue with time. Diabetes. 1985;34(10):1049-1054. doi: 10.2337/diab.34.10.1049.
54. Kotani K., Peroni O. D., Minokoshi Y., Boss O., Kahn B. B. GLUT4 glucose transporter deficiency increases hepatic lipid production and peripheral lipid utilization. J Clin Invest. 2004;114(11):1666-1675. doi: 10.1172/JCI21341.
55. Nielsen T. S., Jessen N., Jørgensen J. O., Møller N., Lund S. Dissecting adipose tissue lipolysis: molecular regulation and implications for metabolic disease. J Mol Endocrinol. 2014;52(3): R199-R222. doi: 10.1530/JME-13-0277.
56. Singh R., Barrios A., Dirakvand G., Pervin S. Human Brown Adipose Tissue and Metabolic Health: Potential for Therapeutic Avenues. Cells. 2021;10(11):3030. doi: 10.3390/cells10113030.
57. Rosenwald M., Wolfrum C. The origin and definition of brite versus white and classical brown adipocytes. Adipocyte. 2014;3(1):4-9. doi: 10.4161/adip.26232.
58. Bartness T. J., Vaughan C. H., Song C. K. Sympathetic and sensory innervation of brown adipose tissue.Int J Obes (Lond). 2010;34 Suppl 1(0 1): S36-S42. doi: 10.1038/ijo.2010.182.
59. Townsend K. L., Tseng Y. H. Brown fat fuel utilization and thermogenesis. Trends Endocrinol Metab. 2014;25(4):168-177. doi: 10.1016/j.tem.2013.12.004.
60. McNeill B.T., Morton N. M., Stimson R. H. Substrate Utilization by Brown Adipose Tissue: What’s Hot and What’s Not?. Front Endocrinol (Lausanne). 2020;11:571659. doi: 10.3389/fendo.2020.571659.
61. Dallner O. S., Chernogubova E., Brolinson K. A., Bengtsson T. Beta3-adrenergic receptors stimulate glucose uptake in brown adipocytes by two mechanisms independently of glucose transporter 4 translocation. Endocrinology. 2006;147(12):5730-5739. doi: 10.1210/en.2006-0242.
62. Ouellet V., Labbé S. M., Blondin D. P. et al. Brown adipose tissue oxidative metabolism contributes to energy expenditure during acute cold exposure in humans. J Clin Invest. 2012;122(2):545-552. doi: 10.1172/JCI60433.
63. Saari T. J., Raiko J., U-Din M. et al. Basal and cold-induced fatty acid uptake of human brown adipose tissue is impaired in obesity. Sci Rep. 2020;10(1):14373. doi: 10.1038/s41598-020-71197-2.
64. Cuevas-Ramos D., Mehta R., Aguilar-Salinas C. A. Fibroblast Growth Factor 21 and Browning of White Adipose Tissue. Front Physiol. 2019;10:37. doi: 10.3389/fphys.2019.00037.
65. Wu J., Boström P., Sparks L. M. et al. Beige adipocytes are a distinct type of thermogenic fat cell in mouse and human. Cell. 2012;150(2):366-376. doi: 10.1016/j.cell.2012.05.016.
66. Zuriaga M. A., Fuster J. J., Gokce N., Walsh K. Humans and Mice Display Opposing Patterns of “Browning” Gene Expression in Visceral and Subcutaneous White Adipose Tissue Depots. Front Cardiovasc Med. 2017;4:27. doi: 10.3389/fcvm.2017.00027.
67. Shao M., Wang Q. A., Song A. et al. Cellular Origins of Beige Fat Cells Revisited. Diabetes. 2019;68(10):1874-1885. doi: 10.2337/db19-0308.
68. Müller S., Perdikari A., Dapito D. H. et al. ESRRG and PERM1 Govern Mitochondrial Conversion in Brite/Beige Adipocyte Formation. Front Endocrinol (Lausanne). 2020;11:387. doi: 10.3389/fendo.2020.00387.
69. Ricquier D., Bouillaud F. The uncoupling protein homologues: UCP1, UCP2, UCP3, StUCP and AtUCP. Biochem J. 2000;345 Pt 2(Pt 2):161-179. doi: 10.1042/bj3450161.
70. Ježek P., Jabůrek M., Porter R. K. Uncoupling mechanism and redox regulation of mitochondrial uncoupling protein 1 (UCP1). Biochim Biophys Acta Bioenerg. 2019;1860(3):259-269. doi: 10.1016/j.bbabio.2018.11.007.
71. Villarroya F., Peyrou M., Giralt M. Transcriptional regulation of the uncoupling protein-1 gene. Biochimie. 2017;134:86-92. doi: 10.1016/j.biochi.2016.09.017.
72. Kazak L., Chouchani E. T., Jedrychowski M. P. et al. A creatine-driven substrate cycle enhances energy expenditure and thermogenesis in beige fat. Cell. 2015;163(3):643-655. doi: 10.1016/j.cell.2015.09.035.
73. Sun Y., Rahbani J. F., Jedrychowski M. P. et al. Mitochondrial TNAP controls thermogenesis by hydrolysis of phosphocreatine. Nature. 2021;593(7860):580-585. doi: 10.1038/s41586-021-03533-z.
74. Kim Y. H., Lee J. H., Yeung J. L. et al. Thermogenesis-independent metabolic benefits conferred by isocaloric intermittent fasting in ob/ob mice. Sci Rep. 2019;9(1):2479. doi: 10.1038/s41598-019-39380-2.
75. Angueira A. R., Sakers A. P., Holman C. D. et al. Defining the lineage of thermogenic perivascular adipose tissue. Nat Metab. 2021;3(4):469-484. doi: 10.1038/s42255-021-00380-0.
76. Sakers A., De Siqueira M. K., Seale P., Villanueva C. J. Adipose-tissue plasticity in health and disease. Cell. 2022;185(3):419-446. doi: 10.1016/j.cell.2021.12.016.
77. Wu J., Jun H., McDermott J. R. Formation and activation of thermogenic fat. Trends Genet. 2015;31(5):232-238. doi: 10.1016/j.tig.2015.03.003.
78. Gaudry M. J., Jastroch M., Treberg J. R. et al. Inactivation of thermogenic UCP1 as a historical contingency in multiple placental mammal clades. Sci Adv. 2017;3(7): e1602878. doi: 10.1126/sciadv.1602878.
79. Periasamy M., Maurya S. K., Sahoo S. K. et al. Role of SERCA Pump in Muscle Thermogenesis and Metabolism.Compr Physiol. 2017;7(3):879-890. doi: 10.1002/cphy.c160030.
80. Connell N. J., Doligkeit D., Andriessen C. et al. No evidence for brown adipose tissue activation after creatine supplementation in adult vegetarians. Nat Metab. 2021;3(1):107-117. doi: 10.1038/s42255-020-00332-0.
81. Mottillo E. P., Balasubramanian P., Lee Y. H., Weng C., Kershaw E. E., Granneman J. G. Coupling of lipolysis and de novo lipogenesis in brown, beige, and white adipose tissues during chronic β3-adrenergic receptor activation. J Lipid Res. 2014;55(11):2276-2286. doi: 10.1194/jlr.M050005.
82. Divakaruni A. S., Wiley S. E., Rogers G. W. et al. Thiazolidinediones are acute, specific inhibitors of the mitochondrial pyruvate carrier. Proc Natl Acad Sci U S A. 2013;110(14):5422-5427. doi: 10.1073/pnas.1303360110.
83. Harrison S. A., Alkhouri N., Davison B. A. et al. Insulin sensitizer MSDC-0602K in non-alcoholic steatohepatitis: A randomized, double-blind, placebo-controlled phase IIb study. J Hepatol. 2020;72(4):613-626. doi: 10.1016/j.jhep.2019.10.023.
84. Palmer A. K., Tchkonia T., LeBrasseur N.K., Chini E. N., Xu M., Kirkland J. L. Cellular Senescence in Type 2 Diabetes: A Therapeutic Opportunity. Diabetes. 2015;64(7):2289-2298. doi: 10.2337/db14-1820.
85. Kurmaev D. P., Bulgakova S. V., Treneva E. V. Insulin resistance, type 2 diabetes mellitus and sarcopenia. Experimental and Clinical Gastroenterology. 2024;(2):141-148. (In Russ.) doi: 10.31146/1682-8658-ecg-222-2-141-148.@@ Курмаев Д. П., Булгакова С. В., Тренева Е. В. Инсулинорезистентность, сахарный диабет 2 типа и саркопения. Экспериментальная и клиническая гастроэнтерология. 2024;(2):141-148. doi: 10.31146/1682-8658-ecg-222-2-141-148.
86. Caso G., McNurlan M.A., Mileva I., Zemlyak A., Mynarcik D. C., Gelato M. C. Peripheral fat loss and decline in adipogenesis in older humans. Metabolism. 2013;62(3):337-340. doi: 10.1016/j.metabol.2012.08.007.
87. Nguyen H. P., Lin F., Yi D. et al. Aging-dependent regulatory cells emerge in subcutaneous fat to inhibit adipogenesis. Dev Cell. 2021;56(10):1437-1451.e3. doi: 10.1016/j.devcel.2021.03.026.
88. Yamamuro T., Kawabata T., Fukuhara A. et al. Age-dependent loss of adipose Rubicon promotes metabolic disorders via excess autophagy. Nat Commun. 2020;11(1): 4150. doi: 10.1038/s41467-020-17985-w.
89. Tan C. Y., Virtue S., Bidault G. et al. Brown Adipose Tissue Thermogenic Capacity Is Regulated by Elovl6. Cell Rep. 2015;13(10):2039-2047. doi: 10.1016/j.celrep.2015.11.004.
90. Zoico E., Rubele S., De Caro A. et al. Brown and Beige Adipose Tissue and Aging. Front Endocrinol (Lausanne). 2019;10:368. doi: 10.3389/fendo.2019.00368.
91. Becerril S., Gómez-Ambrosi J., Martín M. et al. Role of PRDM16 in the activation of brown fat programming. Relevance to the development of obesity. Histol Histopathol. 2013;28(11):1411-1425. doi: 10.14670/HH-28.1411.
92. Lim S., Park J., Um J. Y. Ginsenoside Rb1 Induces Beta 3 Adrenergic Receptor-Dependent Lipolysis and Thermogenesis in 3T3-L1 Adipocytes and db/db Mice. Front Pharmacol. 2019;10:1154. doi: 10.3389/fphar.2019.01154.
93. Kanazawa S. Does global warming contribute to the obesity epidemic?. Environ Res. 2020;182:108962. doi: 10.1016/j.envres.2019.108962.
94. van Marken Lichtenbelt W. D., Vanhommerig J. W., Smulders N. M. et al. Cold-activated brown adipose tissue in healthy men [published correction appears in N Engl J Med. 2009 Apr 30;360(18):1917]. N Engl J Med. 2009;360(15):1500-1508. doi: 10.1056/NEJMoa0808718.
95. Labbé S. M., Mouchiroud M., Caron A. et al. mTORC1 is Required for Brown Adipose Tissue Recruitment and Metabolic Adaptation to Cold. Sci Rep. 2016;6:37223. doi: 10.1038/srep37223.
96. Orava J., Nuutila P., Noponen T. et al. Blunted metabolic responses to cold and insulin stimulation in brown adipose tissue of obese humans. Obesity (Silver Spring). 2013;21(11):2279-2287. doi: 10.1002/oby.20456.
97. Lee P., Swarbrick M. M., Ho K. K. Brown adipose tissue in adult humans: a metabolic renaissance. Endocr Rev. 2013;34(3):413-438. doi: 10.1210/er.2012-1081.
98. Sharp L. Z., Shinoda K., Ohno H. et al. Human BAT possesses molecular signatures that resemble beige/brite cells. PLoS One. 2012;7(11): e49452. doi: 10.1371/journal.pone.0049452.
99. Mo Q., Salley J., Roshan T., et al. Identification and characterization of a supraclavicular brown adipose tissue in mice. JCI Insight. 2017;2(11): e93166. doi: 10.1172/jci.insight.93166.
100. de Jong J. M.A., Sun W., Pires N. D. et al. Human brown adipose tissue is phenocopied by classical brown adipose tissue in physiologically humanized mice [published correction appears in Nat Metab. 2019 Sep;1(9):927. doi: 10.1038/s42255-019-0119-7]. Nat Metab. 2019;1(8):830-843. doi: 10.1038/s42255-019-0101-4.
101. Danysz W., Han Y., Li F. et al. Browning of white adipose tissue induced by the ß3 agonist CL-316,243 after local and systemic treatment - PK-PD relationship. Biochim Biophys Acta Mol Basis Dis. 2018;1864(9 Pt B):2972-2982. doi: 10.1016/j.bbadis.2018.06.007.
102. Jimenez M., Barbatelli G., Allevi R. et al. Beta 3-adrenoceptor knockout in C57BL/6J mice depresses the occurrence of brown adipocytes in white fat. Eur J Biochem. 2003;270(4):699-705. doi: 10.1046/j.1432-1033.2003.03422.x
103. Herz C. T., Kiefer F. W. Adipose tissue browning in mice and humans. J Endocrinol. 2019;241(3): R97-R109. doi: 10.1530/JOE-18-0598.
104. Cypess A. M., Weiner L. S., Roberts-Toler C. et al. Activation of human brown adipose tissue by a β3-adrenergic receptor agonist. Cell Metab. 2015;21(1):33-38. doi: 10.1016/j.cmet.2014.12.009.
105. O’Mara A.E., Johnson J. W., Linderman J. D. et al. Chronic mirabegron treatment increases human brown fat, HDL cholesterol, and insulin sensitivity. J Clin Invest. 2020;130(5):2209-2219. doi: 10.1172/JCI131126.
106. O’Mara A.E., Johnson J. W., Linderman J. D. et al. Chronic mirabegron treatment increases human brown fat, HDL cholesterol, and insulin sensitivity. J Clin Invest. 2020;130(5):2209-2219. doi: 10.1172/JCI131126
107. Matsushita M., Nirengi S., Hibi M, et al. Diurnal variations of brown fat thermogenesis and fat oxidation in humans.Int J Obes (Lond). 2021;45(11):2499-2505. doi: 10.1038/s41366-021-00927-x.
108. Halpern B., Mancini M. C., Bueno C. et al. Melatonin Increases Brown Adipose Tissue Volume and Activity in Patients With Melatonin Deficiency: A Proof-of-Concept Study. Diabetes. 2019;68(5):947-952. doi: 10.2337/db18-0956.
109. Agil A., Navarro-Alarcon M., Ali F. A.Z. et al. Melatonin Enhances the Mitochondrial Functionality of Brown Adipose Tissue in Obese-Diabetic Rats. Antioxidants (Basel). 2021;10(9):1482. doi: 10.3390/antiox10091482.
110. Kosareva O. V., Bulgakova S. V., Dolgikh Yu.A. et al. Modern approach to the prevention of type 2 diabetes in the elderly. Advances in Gerontology. 2023;36(4):547-554. (In Russ.) doi: 10.34922/AE.2023.36.4.013.@@ Косарева О. В., Булгакова С. В., Долгих Ю. А. и др. Современный подход к профилактике сахарного диабета 2-го типа у пожилых. Успехи геронтологии. 2023;36(4):547-554. doi: 10.34922/AE.2023.36.4.013.
111. Lv Z., Guo Y. Metformin and Its Benefits for Various Diseases. Front Endocrinol (Lausanne). 2020;11:191. doi: 10.3389/fendo.2020.00191.
112. Prattichizzo F., Giuliani A., Mensà E. et al. Pleiotropic effects of metformin: Shaping the microbiome to manage type 2 diabetes and postpone ageing. Ageing Res Rev. 2018;48:87-98. doi: 10.1016/j.arr.2018.10.003.
113. Kim E.K., Lee S. H., Jhun J. Y. et al. Metformin Prevents Fatty Liver and Improves Balance of White/Brown Adipose in an Obesity Mouse Model by Inducing FGF21. Mediators Inflamm. 2016;2016:5813030. doi: 10.1155/2016/5813030.
114. Karise I., Bargut T. C., Del Sol M., Aguila M. B., Mandarim-de-Lacerda C. A. Metformin enhances mitochondrial biogenesis and thermogenesis in brown adipocytes of mice. Biomed Pharmacother. 2019;111:1156-1165. doi: 10.1016/j.biopha.2019.01.021.
115. Silvester A. J., Aseer K. R., Yun J. W. Dietary polyphenols and their roles in fat browning. J Nutr Biochem. 2019;64:1-12. doi: 10.1016/j.jnutbio.2018.09.028.
116. Zhang X., Li X., Fang H. et al. Flavonoids as inducers of white adipose tissue browning and thermogenesis: signalling pathways and molecular triggers. Nutr Metab (Lond). 2019;16:47. doi: 10.1186/s12986-019-0370-7.
117. Wang S., Liang X., Yang Q. et al. Resveratrol induces brown-like adipocyte formation in white fat through activation of AMP-activated protein kinase (AMPK) α1.Int J Obes (Lond). 2015;39(6):967-976. doi: 10.1038/ijo.2015.23.
118. Saito M., Matsushita M., Yoneshiro T., Okamatsu-Ogura Y. Brown Adipose Tissue, Diet-Induced Thermogenesis, and Thermogenic Food Ingredients: From Mice to Men. Front Endocrinol (Lausanne). 2020;11:222. doi: 10.3389/fendo.2020.00222.
119. Valente A., Carrillo A. E., Tzatzarakis M. N. et al. The absorption and metabolism of a single L-menthol oral versus skin administration: Effects on thermogenesis and metabolic rate. Food Chem Toxicol. 2015;86:262-273. doi: 10.1016/j.fct.2015.09.018.
120. Jiang J., Emont M. P., Jun H. et al. Cinnamaldehyde induces fat cell-autonomous thermogenesis and metabolic reprogramming. Metabolism. 2017;77:58-64. doi: 10.1016/j.metabol.2017.08.006.
121. Li G., Xie C., Lu S. et al.Intermittent Fasting Promotes White Adipose Browning and Decreases Obesity by Shaping the Gut Microbiota. Cell Metab. 2017;26(4):672-685.e4. doi: 10.1016/j.cmet.2017.08.019.
122. Ma Q., Zhou X., Hu L., Chen J., Zhu J., Shan A. Leucine and isoleucine have similar effects on reducing lipid accumulation, improving insulin sensitivity and increasing the browning of WAT in high-fat diet-induced obese mice. Food Funct. 2020;11(3):2279-2290. doi: 10.1039/c9fo03084k.
123. Dohlmann T. L., Hindsø M., Dela F., Helge J. W., Larsen S. High-intensity interval training changes mitochondrial respiratory capacity differently in adipose tissue and skeletal muscle. Physiol Rep. 2018;6(18): e13857. doi: 10.14814/phy2.13857.
124. Otero-Díaz B., Rodríguez-Flores M., Sánchez-Muñoz V. et al. Exercise Induces White Adipose Tissue Browning Across the Weight Spectrum in Humans. Front Physiol. 2018;9:1781. doi: 10.3389/fphys.2018.01781.
125. Powers S. K., Deminice R., Ozdemir M., Yoshihara T., Bomkamp M. P., Hyatt H. Exercise-induced oxidative stress: Friend or foe?. J Sport Health Sci. 2020;9(5):415-425. doi: 10.1016/j.jshs.2020.04.001.
126. Reddy A., Bozi L. H.M., Yaghi O. K. et al. pH-Gated Succinate Secretion Regulates Muscle Remodeling in Response to Exercise. Cell. 2020;183(1):62-75.e17. doi: 10.1016/j.cell.2020.08.039.
127. Vosselman M. J., Hoeks J., Brans B. et al. Low brown adipose tissue activity in endurance-trained compared with lean sedentary men.Int J Obes (Lond). 2015;39(12):1696-1702. doi: 10.1038/ijo.2015.130.
128. Martinez-Tellez B., Sanchez-Delgado G., Acosta F. M. et al. No evidence of brown adipose tissue activation after 24 weeks of supervised exercise training in young sedentary adults in the ACTIBATE randomized controlled trial. Nat Commun. 2022;13(1):5259. doi: 10.1038/s41467-022-32502-x.
129. Pinckard K. M., Shettigar V. K., Wright K. R. et al. A Novel Endocrine Role for the BAT-Released Lipokine 12,13-diHOME to Mediate Cardiac Function. Circulation. 2021;143(2):145-159. doi: 10.1161/CIRCULATIONAHA.120.049813.
130. Becic T., Studenik C., Hoffmann G. Exercise Increases Adiponectin and Reduces Leptin Levels in Prediabetic and Diabetic Individuals: Systematic Review and Meta-Analysis of Randomized Controlled Trials. Med Sci (Basel). 2018;6(4):97. doi: 10.3390/medsci6040097.
131. Kim K. H., Kim S. H., Min Y. K., Yang H. M., Lee J. B., Lee M. S. Acute exercise induces FGF21 expression in mice and in healthy humans. PLoS One. 2013;8(5): e63517. doi: 10.1371/journal.pone.0063517.
132. Li X. H., Liu L. Z., Chen L. et al. Aerobic exercise regulates FGF21 and NLRP3 inflammasome-mediated pyroptosis and inhibits atherosclerosis in mice. PLoS One. 2022;17(8): e0273527. doi: 10.1371/journal.pone.0273527.
133. Liu P. S., Lin Y. W., Burton F. H., Wei L. N. Injecting engineered anti-inflammatory macrophages therapeutically induces white adipose tissue browning and improves diet-induced insulin resistance. Adipocyte. 2015;4(2):123-128. doi: 10.4161/21623945.2014.981438.
134. Yang J. P., Anderson A. E., McCartney A. et al. Metabolically Active Three-Dimensional Brown Adipose Tissue Engineered from White Adipose-Derived Stem Cells. Tissue Eng Part A. 2017;23(7-8):253-262. doi: 10.1089/ten.TEA.2016.0399.
135. Blumenfeld N. R., Kang H. J., Fenzl A. et al. A direct tissue-grafting approach to increasing endogenous brown fat. Sci Rep. 2018;8(1):7957. doi: 10.1038/s41598-018-25866-y.
136. Zhang Y., Liu Q., Yu J. et al. Locally Induced Adipose Tissue Browning by Microneedle Patch for Obesity Treatment. ACS Nano. 2017;11(9):9223-9230. doi: 10.1021/acsnano.7b04348.
137. Zhu T., Chen X., Jiang S. Progress and obstacles in transplantation of brown adipose tissue or engineered cells with thermogenic potential for metabolic benefits. Front Endocrinol (Lausanne). 2023;14:1191278. doi: 10.3389/fendo.2023.1191278.
Review
For citations:
Kurmaev D.P., Bulgakova S.V., Treneva E.V., Merzlova P.Ya. Effects of therapeutic factors on brown adipose tissue in order to correct obesity. Experimental and Clinical Gastroenterology. 2024;(8):7-27. (In Russ.) https://doi.org/10.31146/1682-8658-ecg-228-8-7-27