Preview

Experimental and Clinical Gastroenterology

Advanced search

Tissue engineering in surgery: history of development and modern aspects of application

https://doi.org/10.31146/1682-8658-ecg-226-6-149-154

Abstract

This article presents a literature review devoted to a brief history of the development of tissue engineering, samples of modern matrices that can be used for programmed effects on the reparative processes of damaged tissues after injuries, wounds, and surgical interventions. A frequency analysis of literary sources located in open scientific repositories in Russian and English with a search depth of 5 years was carried out. In order to generate search queries, we used keywords and phrases that related to one of the areas of tissue engineering - the development and experimental testing of polymer matrices for the purposes of reconstructive surgery, in particular, for filling defects and restoring lost tissues of the hollow organs of the abdominal cavity. Results: when conducting a frequency analysis of Russian scientific electronic libraries, the most frequently used words relative to other terms were “tissue engineering” (869), “cellular technologies” (758), “matrix” (716), the rare ones were “tissue engineering design” (255), “gel” (84), “sponge” (55). Among foreign databases in English, “cell technologies” (7009), “tissue engineering” (2400), “membrane” (2282) predominated; “gel” (116), “sponge” (158), “tissue engineered structure” were less common “(421). Conclusions: frequency analysis showed that the most common keywords in open scientific repositories in Russian and English are “cellular technologies” and “tissue engineering,” which may be due to the generality of these concepts. These words and phrases are more often found in English-language scientific literature. The first is 9.2 times, and the second is 2.7 times.

About the Authors

V. A. Lipatov
Kursk State Medical University
Russian Federation


E. S. Mishina
Kursk State Medical University
Russian Federation


A. A. Denisov
Kursk State Medical University
Russian Federation


T. N. Kudryavtseva
Kursk State University
Russian Federation


Ye. G. Chupakhin
Baltic Federal University named after. I. Kant
Russian Federation


K. A. Korelskaya
Kursk State Medical University
Russian Federation


References

1. Bhat S., Uthappa U. T., Altalhi T., Jung H. Y., Kurkuri M. D. Functionalized Porous Hydroxyapatite Scaffolds for Tissue Engineering Applications: A Focused Review. ACS Biomater Sci Eng. 2022 Oct 10;8(10):4039-4076. doi: 10.1021/acsbiomaterials.1c00438.

2. Modrák M., Trebuňová M., Balogová A. F., Hudák R., Živčák J. Biodegradable Materials for Tissue Engineering: Development, Classification and Current Applications. J Funct Biomater. 2023 Mar 16;14(3):159. doi: 10.3390/jfb14030159.

3. Naboka V. A., Klimentyev A. A., Gabidullin R. F. Biodegradable material for bone tissue replacement. Medicine: theory and practice. 2019;(3):209-215. (in Russ.)@@ Набока В. А., Климентьев А. А., Габидуллин Р. Ф. Биодеградируемый материал для замещения костной ткани. Медицина: теория и практика. 2019;(3):209-215.

4. Sun W., Gregory D. A., Tomeh M. A., Zhao X. Silk Fibroin as a Functional Biomaterial for Tissue Engineering.Int J Mol Sci. 2021 Feb 2;22(3):1499. doi: 10.3390/ijms22031499.

5. Zhou Z., Cui J., Wu S., Geng Z., Su J. Silk fibroin-based biomaterials for cartilage/osteochondral repair. Theranostics. 2022 Jul 4;12(11):5103-5124. doi: 10.7150/thno.74548.

6. Moisenovic M. M., Arkhipova A. Yu., Orlova A. A., Drutskaya M. S., Volkova S. V. et al.Composite matrices based on silk fibroin, gelatin and hydroxyapatite for regenerative medicine and cell cultivation in three-dimensional culture. Acta Naturae (Russian version). 2014;6 (1-20):103-109. (in Russ.)@@ Мойсенович М. М., Архипова А. Ю., Орлова А. А., Друцкая М. С., Волкова С. В. и др. Композитные матриксы на основе фиброина шелка, желатина и гидроксиапатита для регенеративной медицины и культивирования клеток в трехмерной культуре. Acta Naturae (русскоязычная версия). 2014;6(1-20):103-109.

7. Kotlyarova M. S., Arkhipova A. Y., Moysenovich A. M., Kulikov D. A., Molochkov A. V., Moysenovich M. M. [Three-dimensional porous scaffolds based on silk fibroin for bone tissue restoration]. Genes & Cells. 2017;12(3):131-132. (in Russ.) doi: 10.23868/gc120968.@@ Котлярова М. С., Архипова А. Ю., Мойсенович А. М., Куликов Д. А., Молочков А. В., Мойсенович М. М. Трехмерные пористые скаффолды на основе фиброина шелка для восстановления костной ткани. Гены и Клетки. 2017;12(3):131-132. doi: 10.23868/gc120968.

8. Agapova, O. I. Bioengineered constructs based on silk fibroin and spidroin for regenerative medicine and tissue engineering (review). Modern technol. med. 2017. No. 2.@@ Агапова О. И. Биоинженерные конструкции на основе фиброина шелка и спидроина для регенеративной медицины и тканевой инженерии (обзор). Соврем. технол. мед. 2017. № 2.

9. Mikhailova M. M., Sidoruk K. V., Davydova L. I. et al.Matrices based on recombinant spidroins are an effective basis for ex vivo cultivation of both nervous tissue (dorsal ganglia) and the vascular system (aortic fragments). Genes and Cells. 2022;17(3):152. (in Russ.)@@ Михайлова М. М., Сидорук К. В., Давыдова Л. И. Матриксы на основе рекомбинантных спидроинов - эффективная основа для культивирования ex vivo как нервной ткани (дорсальные ганглии), так и сосудистой системы (фрагменты аорты). Гены и Клетки. 2022;17(3):152.

10. Shekhter A. B., Guller A. E., Istranov L. P. et al. Morphology of collagen matrices for tissue engineering (biocompatibility, biodegradation, tissue reaction). Archives of pathology. 2015;(6):29-38. (in Russ.)@@ Шехтер А. Б., Гуллер А. Е., Истранов Л. П. и др. Морфология коллагеновых матриксов для тканевой инженерии (биосовместимость, биодеградация, тканевая реакция). Архив патологии. 2015;(6):29-38.

11. Faizullin A. L., Shekhter A. B., Istranov L. P. et al. Bioresorbable collagen materials in surgery: 50 years of success. Sechenovsky Bulletin. 2020;11(1):59-70. (in Russ.) doi: 10.47093/2218-7332.2020.11.1.59-70. (in Russ.)@@ Файзуллин А. Л., Шехтер А. Б., Истранов Л. П. и др. Биорезорбируемые коллагеновые материалы в хирургии: 50 лет успеха. Сеченовский вестник. 2020;11(1):59-70. doi: 10.47093/2218-7332.2020.11.1.59-70.

12. Sanz-Garcia A., Oliver-de-la-Cruz J., Mirabet V., Gandía C., Villagrasa A., Sodupe E., Escobedo-Lucea C. Heart valve tissue engineering: how far is the bedside from the bench? Expert Rev Mol Med. 2015 Sep 24;17: e16. doi: 10.1017/erm.2015.15.

13. Shipovskaya A. B. Film matrices based on chitosan: properties and prospects for use in combustiology// A. B. Shipovskaya, N. V. Ostrovsky, D. A. Buzinova and others. Selected works on combustiology. Saratov: Scientific book, 2009. pp. 201-10. (in Russ.)@@ Шиповская А. Б. Пленочные матриксы на основе хитозана: свойства и перспективы использования в комбустиологии. А. Б. Шиповская, Н. В. Островский, Д. А. Бузинова и др. Избранные труды по комбустиологии. Саратов: Научная книга; 2009. С. 201-10.

14. Buzinova, D. A., Shipovskaya A. B. Sorption and bactericidal properties of chitosan films. News of Saratov University. New episode. Series: Chemistry. Biology. Ecology. 2008;8(2): 42-46. (in Russ.)@@ Бузинова, Д. А. Сорбционные и бактерицидные свойства пленок хитозана. Д. А. Бузинова, А. Б. Шиповская. Известия Саратовского университета. Новая серия. Серия: Химия. Биология. Экология. 2008. Т. 8, № 2. С. 42-46. [in Russ.]

15. Buzinova D. A. et al. Properties of chitosan films of different chemical forms. News of Saratov University. New series. Series: Chemistry. Biology. Ecology. 2011. Vol. 11, No. 2. PP. 31-39. (in Russ.)@@ Бузинова, Д. А. Свойства пленок из хитозана разных химических форм. Д. А. Бузинова, А. Ю. Абрамов, А. Б. Шиповская. Известия Саратовского университета. Новая серия. Серия: Химия. Биология. Экология. 2011. Т. 11, № 2. С. 31-39.

16. Shi C, Zhu Y, Ran X, Wang M, Su Y, Cheng T. Therapeutic potential of chitosan and its derivatives in regenerative medicine. J Surg Res. 2006 Jun 15;133(2):185-92. doi: 10.1016/j.jss.2005.12.013.

17. Semenov P. S. Analysis of in vivo biodegradation of a cell-free tissue matrix based on chitosan. Bulletin of Volgograd State University. Episode 9: Research by young scientists. 2012;10:54-57. (in Russ.)@@ Семенов П. С. Анализ биодеградации in vivo тканевой бесклеточной матрицы на основе хитозана. П. С. Семенов. Вестник Волгоградского государственного университета. Серия 9: Исследования молодых ученых. 2012. № 10. С. 54-57.

18. Thanh N. H., Olekhnovich R. O., Uspenskaya M. V., Sitnikova V. E., Ngoe C. E. Effect of polymer ratio on thermal properties of polyhydroxybutyrate/polyhydroxyhexanoate. News of the Saint Petersburg State Technological Institute (Technical University). 2023;66(92): 27-30.

19. Mohan A., Girdhar M., Kumar R., Chaturvedi H. S. et al. Polyhydroxybutyrate-Based Nanocomposites for Bone Tissue Engineering. Pharmaceuticals (Basel). 2021 Nov 15;14(11):1163. doi: 10.3390/ph14111163.

20. Shishatskaya, E. I. [Cellular matrices from resorbable polyhydroxyalkanoates]. Genes and cells. 2007. No. 2. (in Russ.) Available at: https://cyberleninka.ru/article/n/kletochnye-matriksy-iz-rezorbiruemyh-poligidroksialkanoatov accessad: 01/28/2024.@@ Шишацкая, Е. И. Клеточные матриксы из резорбируемых полигидроксиалканоатов. Е. И. Шишацкая. Гены и клетки. 2007. № 2. URL: https://cyberleninka.ru/article/n/kletochnye-matriksy-iz-rezorbiruemyh-poligidroksialkanoatov (дата обращения: 28.01.2024).

21. Alam F., Shukla V. R., Varadarajan K. M., Kumar S. Microarchitected 3D printed polylactic acid (PLA) nanocomposite scaffolds for biomedical applications. J Mech Behav Biomed Mater. 2020 Mar;103:103576. doi: 10.1016/j.jmbbm.2019.103576.

22. Zharkova I. I. [Matrices from a biosynthetic copolymer of poly-3-hydroxybutyrate with polyethylene glycol for bone tissue engineering]. Diss… candidate of biological sciences: 01/03/06. (in Russ.)@@ Матриксы из биосинтетического сополимера поли-3-оксибутирата с полиэтиленгликолем для инженерии костной ткани: диссертация на соискание ученой степени кандидата биологических наук: 03.01.06. Жаркова, Ирина Игоревна.

23. Pina S., Rebelo R., Correlo V. M., Oliveira J. M., Reis R. L. Bioceramics for Osteochondral Tissue Engineering and Regeneration. Adv Exp Med Biol. 2018;1058:53-75. doi: 10.1007/978-3-319-76711-6_3.

24. Konovalova, Zh. Yu. Requirements for source materials for bioceramics. Youth scientific spring. 2015: materials of the XLII Scientific and Practical Conference of Young Researchers of Transbaikal State University: in 2 parts, Chita, March 23-28, 2015. Volume Part 2. Chita: Transbaikal State University. 2015. pp. 46-49. (in Russ.) Available at: https://elibrary.ru/item.asp?id=23897120 access date: 02/10/2024.@@ Коновалова, Ж. Ю. Требования к исходным материалам для биокерамики. Ж. Ю. Коновалова. Молодёжная научная весна. 2015: материалы XLII Научно-практической конференции молодых исследователей Забайкальского государственного университета: в 2 частях, Чита, 23-28 марта 2015 года. Том Часть 2. Чита: Забайкальский государственный университет, 2015. С. 46-49. - URL: https://elibrary.ru/item.asp?id=23897120 (дата обращения: 10.02.2024).


Review

For citations:


Lipatov V.A., Mishina E.S., Denisov A.A., Kudryavtseva T.N., Chupakhin Ye.G., Korelskaya K.A. Tissue engineering in surgery: history of development and modern aspects of application. Experimental and Clinical Gastroenterology. 2024;(6):149-154. (In Russ.) https://doi.org/10.31146/1682-8658-ecg-226-6-149-154

Views: 80


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1682-8658 (Print)