Preview

Experimental and Clinical Gastroenterology

Advanced search

Genetic aspects of taste formation

https://doi.org/10.31146/1682-8658-ecg-226-6-38-42

Abstract

The article discusses the molecular genetic basis of taste development which determines the peculiarity of perception of sweet, salty, sour, bitter and high-protein food (umami). The genes TAS1R3, FTO, GLUT2, FGF21, GNAT3 are responsible for individual perception of sugar volume. Serum FGF21 levels are significantly elevated in obese patients and in patients with type 2 diabetes mellitus which presumably indicates a state of resistance to FGF21. Given the role of refined sugars in the development of diseases, the use of foods with a reduced content or complete absence of added sugar is a worldwide trend, especially necessary in the nutrition of children. During genome-wide sequencing for 39 patients aged 15-18 years, FGF21 gene polymorphism was detected in 27 adolescents (69 %) without gender identity. Almost all patients with FGF21 gene polymorphism showed a high addiction to sweet foods. Currently, the existence of a sixth taste is being debated, it is ammonium chloride, whose receptors are regulated by the Otop1 gene which is also responsible for the identification of sour taste.

About the Authors

O. I. Gumeniuk
Saratov State Medical University
Russian Federation


M. E. Lobanov
Saratov State Medical University
Russian Federation


T. E. Posled
Saratov State Medical University
Russian Federation


E. M. Chursina
Saratov State Medical University
Russian Federation


Yu. V. Chernenkov
Saratov State Medical University
Russian Federation


O. S. Groznova
Veltischev Research and Clinical Institute for Pediatrics and Pediatric Surgery of the Pirogov Russian National Research Medical University; N. I. Pirogov Russian National Research Medical University of the Ministry of Health of the Russian Federation; Charitable Foundation for Medical and Social Genetic Assistance Projects “Genome of Life”
Russian Federation


I. A. Glushakov
St. Petersburg State Pediatric Medical University
Russian Federation


References

1. Zakharova I. N., Dmitriyeva Yu.A., Machneva E. B., Kasyanova А. N. Physiology of taste perception: the role of genetic and environmental factors in the formation of taste preferences. Ros Vestn Perinatol i Pediatr. 2018; 63:(4): 23-29. (In Russ.) doi: 10.21508/1027-4065-2018-63-4-23-29.@@ Захарова И. Н., Дмитриева Ю. А., Мачнева Е. Б., Касьянова А. Н. Физиология вкусового восприятия: роль генетических и средовых факторов в формировании вкусовых предпочтений. Рос вестн перинатол и педиатр 2018; 63:(4): 23-29. doi: 10.21508/1027-4065-2018-63-4-23-29.

2. Witt M. Anatomy and development of the human taste system. Handb Clin Neurol. 2019; 164: 147-171. doi: 10.1016/B978-0-444-63855-7.00010-1.

3. Zakharova I. N., Dmitrieva Y. A., Machneva E. B., Tsutsaeva A. N. Formation of taste preferences: anatomical and genetic determinants, significant factors of taste development in children. RMJ. Mother and Child. 2020; 3(2): 119-125. (In Russ.) doi: 10.32364/2618-8430-2020-3-2-119-125.@@ Захарова И. Н., Дмитриева Ю. А., Мачнева Е. Б., Цуцаева А. Н. Формирование вкусовых предпочтений: анатомические и генетические детерминанты, значимые факторы развития вкуса у детей. РМЖ. Мать и дитя. 2020; 3(2): 119-125. doi: 10.32364/2618-8430-2020-3-2-119-125.

4. Zakharova I. N., Dmitriyev Yu.A., Machneva E. B., Tsutsayeva A. N. Taste sensations: history of studying, evolutionary feasibility and strategies of forming correct taste preferences in children. Meditsinskiy sovet = Medical Council. 2020; (10): 65-73. (In Russ.) doi: 10.21518/2079-701X-2020-10-65-73.@@ Захарова И. Н., Дмитриев Ю. А., Мачнева Е. Б., Цуцаева А. Н. Вкусовые ощущения: история изучения, эволюционная целесообразность и стратегии формирования правильных вкусовых предпочтений у детей. Медицинский совет. 2020; (10): 65-73. doi: 10.21518/2079-701X-2020-10-65-73.

5. Ki SY, Jeong YT. Taste Receptors beyond Taste Buds.Int J Mol Sci. 2022; 23(17): 9677. doi: 10.3390/ijms23179677.

6. Xi R., Zheng X., Tizzano M. Role of Taste Receptors in Innate Immunity and Oral Health. J Dent Res. 2022; 101(7): 759-768. doi: 10.1177/00220345221077989.

7. O’Leary C.E., Schneider C., Locksley R. M. Tuft Cells-Systemically Dispersed Sensory Epithelia Integrating Immune and Neural Circuitry. Annu Rev Immunol. 2019; 37: 47-72. doi: 10.1146/annurev-immunol-042718-041505.

8. Zheng X., Tizzano M., Redding K. et al. Gingival solitary chemosensory cells are immune sentinels for periodontitis. Nat Commun. 2019; 10(1): 4496. doi: 10.1038/s41467-019-12505-x.

9. Hollenhorst M. I., Nandigama R., Evers S. B. et al. Bitter taste signaling in tracheal epithelial brush cells elicits innate immune responses to bacterial infection. J Clin Invest. 2022; 132(13): e150951. doi: 10.1172/JCI150951.

10. Steensels S., Depoortere I. Chemoreceptors in the Gut. Annu Rev Physiol. 2018; 80: 117-141. doi: 10.1146/annurev-physiol-021317-121332.

11. Jeruzal-Świątecka J., Fendler W., Pietruszewska W. Clinical Role of Extraoral Bitter Taste Receptors.Int J Mol Sci. 2020; 21(14): 5156. doi: 10.3390/ijms21145156.

12. Breslin P. A.S., Izumi A., Tharp A. et al. Evidence that human oral glucose detection involves a sweet taste pathway and a glucose transporter pathway. PLoS One. 2021; 16(10): e0256989. doi: 10.1371/journal.pone.0256989.

13. Lang R., Lang T., Dunkel A., Ziegler F., Behrens M. Overlapping activation pattern of bitter taste receptors affect sensory adaptation and food perception. Front Nutr. 2022; 9: 1082698. doi: 10.3389/fnut.2022.1082698.

14. Khan A. S., Hichami A., Khan N. A. Taste perception and its effects on oral nutritional supplements in younger life phases. Curr Opin Clin Nutr Metab Care. 2018; 21(5): 411-415. doi: 10.1097/MCO.0000000000000492.

15. Wu B., Eldeghaidy S., Ayed C., Fisk I. D., Hewson L., Liu Y. Mechanisms of umami taste perception: From molecular level to brain imaging. Crit Rev Food Sci Nutr. 2022; 62(25): 7015-7024. doi: 10.1080/10408398.2021.1909532.

16. Diepeveen J., Moerdijk-Poortvliet T. C.W., van der Leij F. R. Molecular insights into human taste perception and umami tastants: A review. J Food Sci. 2022; 87(4): 1449-1465. doi: 10.1111/1750-3841.16101.

17. Liang Z., Wilson C. E., Teng B., Kinnamon S. C., Liman E. R. The proton channel OTOP1 is a sensor for the taste of ammonium chloride. Nat Commun. 2023; 5;14(1): 6194. doi: 10.1038/s41467-023-41637-4.

18. Ventura A. K., Worobey J. Early influences on the development of food preferences. Curr Biol. 2013; 6;23(9): R401-8. doi: 10.1016/j.cub.2013.02.037.

19. Beauchamp G. K., Mennella J. A. Early flavor learning and its impact on later feeding behavior. J Pediatr Gastroenterol Nutr. 2009;48 Suppl 1: S25-30. doi: 10.1097/MPG.0b013e31819774a5.

20. Lin J. A., Wu C. H., Lu C. C., Hsia S. M., Yen G. C. Glycative stress from advanced glycation end products (AGEs) and dicarbonyls: An emerging biological factor in cancer onset and progression. Mol Nutr Food Res. 2016; 60(8): 1850-64. doi: 10.1002/mnfr.201500759.

21. Khalid M., Petroianu G., Adem A. Advanced Glycation End Products and Diabetes Mellitus: Mechanisms and Perspectives. Biomolecules. 2022; 12(4): 542. doi: 10.3390/biom12040542.

22. WHO global sodium benchmarks for different food categories. World Health Organization 2021. Available at: https://nczd.ru/wp-content/uploads/2019/12/Met_rekom_1_god_.pdf. Accessed: 22.07.2023.

23. Murovets V. O., Lukina E. A. T1R taste receptors and the regulation of carbohydrate intake and metabolism in mammals.Integrative Physiology. 2020; 3(3): 270-285. (in Russ.) doi: 10.33910/2687-1270-2022-3-3-270-285.@@ Муровец В. О., Лукина Е. А. Роль вкусовых рецепторов T1R в регуляции потребления и метаболизма углеводов у млекопитающих. Интегративная физиология. - 2022. - Т. 3. - №. 3. - С. 270-285. doi: 10.33910/2687-1270-2022-3-3-270-285.

24. Fredriksson R., Hägglund M., Olszewski P. K. et al. The obesity gene, FTO, is of ancient origin, up-regulated during food deprivation and expressed in neurons of feeding-related nuclei of the brain. Endocrinology. 2008; 149(5): 2062-71. doi: 10.1210/en.2007-1457.

25. Jia G., Fu Y., Zhao X. et al. N6-methyladenosine in nuclear RNA is a major substrate of the obesity-associated FTO. Nat Chem Biol. 2011; 16;7(12): 885-7. doi: 10.1038/nchembio.687.

26. Chernenkov Y. V., Gumenyuk O. I., Glushakov I. A., Glushakova V. D. Some aspects of the formation of dietary intake of children of different age groups. RMZH. Mother and Child. 2023; 6(2): 169-174. (In Russ.) doi: 10.32364/2618-8430-2023-6-2-169-174.@@ Черненков Ю. В., Гуменюк О. И., Глушаков И. А., Глушакова В. Д. Некоторые аспекты формирования рационов питания детей разных возрастных групп. РМЖ. Мать и дитя. 2023; 6(2): 169-174. doi: 10.32364/2618-8430-2023-6-2-169-174.

27. Olszewski P. K., Fredriksson R., Olszewska A. M. et al. Hypothalamic FTO is associated with the regulation of energy intake not feeding reward. BMC Neurosci. 2009; 27;10: 129. doi: 10.1186/1471-2202-10-129.

28. Eny K. M., Wolever T. M., Fontaine-Bisson B., El-Sohemy A. Genetic variant in the glucose transporter type 2 is associated with higher intakes of sugars in two distinct populations. Physiol Genomics. 2008; 13;33(3): 355-60. doi: 10.1152/physiolgenomics.00148.2007.

29. Robino A., Concas M. P., Catamo E., Gasparini P. A Brief Review of Genetic Approaches to the Study of Food Preferences: Current Knowledge and Future Directions. Nutrients. 2019; 26;11(8): 1735. doi: 10.3390/nu11081735.

30. BonDurant L. D., Potthoff M. J. Fibroblast Growth Factor 21: A Versatile Regulator of Metabolic Homeostasis. Annu Rev Nutr. 2018; 21;38: 173-196. doi: 10.1146/annurev-nutr-071816-064800.

31. Flippo K. H., Potthoff M. J. Metabolic Messengers: FGF21. Nat Metab. 2021; 3(3): 309-317. doi: 10.1038/s42255-021-00354-2.

32. Frayling T. M., Beaumont R. N., Jones S. E. et al. A Common Allele in FGF21 Associated with Sugar Intake Is Associated with Body Shape, Lower Total Body-Fat Percentage, and Higher Blood Pressure. Cell Rep. 2018; 10;23(2): 327-336. doi: 10.1016/j.celrep.2018.03.070.

33. Zhang D., Wang S., Ospina E. et al. Fructose Protects Against Acetaminophen-Induced Hepatotoxicity Mainly by Activating the Carbohydrate-Response Element-Binding Protein α-Fibroblast Growth Factor 21 Axis in Mice. Hepatol Commun. 2021; 5(6): 992-1008. doi: 10.1002/hep4.1683.

34. Behrens M., Meyerhof W. A role for taste receptors in (neuro)endocrinology?. J Neuroendocrinol. 2019; 31(3): e12691. doi: 10.1111/jne.12691.

35. Hwang L. D., Lin C., Gharahkhani P. et al. New insight into human sweet taste: a genome-wide association study of the perception and intake of sweet substances. Am J Clin Nutr. 2019; 109(6): 1724-1737. doi: 10.1093/ajcn/nqz043


Review

For citations:


Gumeniuk O.I., Lobanov M.E., Posled T.E., Chursina E.M., Chernenkov Yu.V., Groznova O.S., Glushakov I.A. Genetic aspects of taste formation. Experimental and Clinical Gastroenterology. 2024;(6):38-42. (In Russ.) https://doi.org/10.31146/1682-8658-ecg-226-6-38-42

Views: 246


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1682-8658 (Print)