Preview

Experimental and Clinical Gastroenterology

Advanced search

Wilson’s disease: current and potentially new therapeutic strategies

https://doi.org/10.31146/1682-8658-ecg-224-4-64-73

Abstract

Wilson disease (WD) is a rare autosomal recessive disease in which copper accumulates in liver cells (hepatocytes) and other organs. The development of the disease is associated with mutations in the ATP7B gene, which is located on chromosome13q14. The product of this gene is a multifunctional intracellular P1-type ATPase enzyme that accelerates copper excretion through the bile duct when intracellular copper levels are high. It also metabolizes copper in other ways, preventing it from accumulating in hepatocytes. The main ways to combat Wilson’s disease are to reduce copper intake and stimulate its excretion from the body. The advent of oral chelators has revolutionized the treatment of BV, but they, as well as low-copper diets, cannot fully solve many of the problems. For example, current conventional therapies are unable to correct copper metabolism and are unable to cross the blood-brain barrier. In addition, many patients with BV face serious side effects, and the need to take medication at least twice a day for the rest of their lives creates a problem of adherence to treatment. All of this indicates that traditional therapeutic strategies have been practically exhausted and that innovative approaches to disease treatment based on the elimination of the cause of the disease are required. This review considers both current conventional therapies and potentially new therapies, including gene therapy and gene repair, which offer the hope that a complete cure of Wilson’s disease is possible. In addition, a team approach to the management of Wilson’s disease is discussed, as well as factors that contribute to achieving good patient adherence to treatment.

About the Authors

K. A. Aitbaev
Scientific Research Institute of Molecular Biology and Medicine
Russian Federation


I. T. Murkamilov
Kyrgyz State Medical Academy named after I. K. Akhunbayev; Kyrgyz Russian Slavic University named after the First President of Russia B. N. Yeltsin
Russian Federation


Zh. A. Murkamilova
Kyrgyz Russian Slavic University named after the First President of Russia B. N. Yeltsin
Russian Federation


V. V. Fomin
FSAEI HE First Moscow State Medical University named after I. M. Sechenov
Russian Federation


I. O. Kudaibergenova
Kyrgyz State Medical Academy named after I. K. Akhunbayev
Russian Federation


T. F. Yusupova
Osh State University
Russian Federation


F. A. Yusupov
Osh State University
Russian Federation


References

1. Disorders of copper metabolism (Wilson’s disease). Clinical recommendations. (In Russ.) Available at: https://cr.minzdrav.gov.ru/schema/376_2 (accessed 01.21.2022.) @@ Нарушения обмена меди (болезнь Вильсона). Клинические рекомендации. Доступно на: https://cr.minzdrav.gov.ru/schema/376_2 (доступ 21.01.2022.)

2. Kerkar N., Roberts E. A. Clinical and translational perspectives on Wilson disease. New York: Academic Press. 2018.

3. Schilsky M.L., Roberts E. A., Bronstein J. M. et al. A multidisciplinary approach to the diagnosis and management of Wilson disease: executive summary of the 2022 practice guidance on Wilson disease from the American Association for the Study of Liver Diseases. Hepatology. 2023;77:1428-1455. doi: 10.1002/hep.32805.

4. Wenisch E., De Tassigny A., Trocello J-M. et al. Cognitive profile in Wilson’s disease: a case series of 31 patients. Rev Neurol (Paris). 2013;169:944-949. doi: 10.1016/j.neurol.2013.06.002.

5. Iwański S., Seniów J., Leśniak M. et al. Diverse attention deficits in patients with neurologically symptomatic and asymptomatic Wilson’s disease. Neuropsychology. 2015;29:25-30. doi: 10.1037/neu0000103.

6. Shribman S., Burrows M., Convery R. et al. Neuroimaging correlates of cognitive deficits in Wilson’s disease. Mov Disord. 2022;37:1728-1738. doi: 10.1002/mds.29123.

7. Zimbrean P.C., Schilsky M. L. The spectrum of psychiatric symptoms in Wilson’s disease: treatment and prognostic considerations. Am J Psychiatry. 2015;172:1068-1072. doi: 10.1176/appi.ajp.2015.15030371.

8. Camarata M.A., Ala A., Coskun A. K. et al. Major depressive disorder in an international multisite Wilson disease registry. J Acad Consult Liaison Psychiatry. 2023;64:106-117. doi: 10.1016/j.jaclp.2022.12.001.

9. Schilsky M.L., Czlonkowska A., Zuin M. et al. Trientine tetrahydrochloride versus penicillamine for maintenance therapy in Wilson disease (CHELATE): a randomised, open-label, non-inferiority, phase 3 trial. Lancet Gastroenterol Hepatol. 2022;7:1092-1102. doi: 10.1016/S2468-1253(22)00270-9.

10. Weiss K.H., Gotthardt D. N., Klemm D. et al. Zinc monotherapy is not as effective as chelating agents in treatment of Wilson disease. Gastroenterology. 2011;140(4):1189-1198.e1. doi: 10.1053/j.gastro.2010.12.034.

11. Valentino P.L., Roberts E. A., Beer S. et al. Management of Wilson disease diagnosed in infancy: an appraisal of available experience to generate discussion. J Pediatr Gastroenterol Nutr. 2020;70:547-554. doi: 10.1097/MPG.0000000000002608.

12. Członkowska A., Rodo M., Wierzchowska-Ciok A. et al. Accuracy of the radioactive copper incorporation test in the diagnosis of Wilson disease. Liver Int. 2018;38:1860-1866. doi: 10.1111/liv.13715.

13. Duncan A., Yacoubian C., Beetham R. et al. The role of calculated non-caeruloplasmin-bound copper in Wilson’s disease. Ann Clin Biochem. 2017;54:649-654. doi: 10.1177/0004563216676843.

14. Solovyev N., Ala A., Schilsky M. et al. Biomedical copper speciation in relation to Wilson’s disease using strong anion exchange chromatography coupled to triple quadrupole inductively coupled plasma mass spectrometry. Anal Chim Acta.2020;1098:27-36. doi: 10.1016/j.aca.2019.11.033.

15. Del Castillo Busto M. E., Cuello-Nunez S., Ward-Deitrich C. et al. A fit-for-purpose copper speciation method for the determination of exchangeable copper relevant to Wilson’s disease. Anal Bioanal Chem. 2022;414:561-573. doi: 10.1007/s00216-021-03517-y.

16. Dong Y., Ni W., Chen W.-J. et al. Spectrum and classification of ATP7B variants in a large cohort of Chinese patients with Wilson’s disease guides genetic diagnosis. Theranostics. 2016; 6: 638-649. doi: 10.7150/thno.14596.

17. Weiss K.H., Stremmel W. Clinical considerations for an effective medical therapy in Wilson’s disease. Ann N Y Acad Sci. 2014; 1315: 81-85. doi: 10.1111/nyas.12437.

18. Iorio R., M. D’Ambrosi M., Marcellini M. et al. Serum transaminases in children with Wilson’s disease. J Pediatr Gastroenterol Nutr. 2004;39:331-336. doi: 10.1097/00005176-200410000-00006.

19. Beinhardt S., Leiss W., Stättermayer A. F. et al. Long-term outcomes of patients with Wilson disease in a large Austrian cohort. Clin Gastroenterol Hepatol. 2014;12:683-689. doi: 10.1016/j.cgh.2013.09.025.

20. Zhou Z.-H., Y.-F., Wu Y.-F., Yan Y. et al. Persistence with medical treatment for Wilson disease in China based on a single center’s survey research. Brain Behav. 2021;11: e02168. doi: 10.1002/brb3.2168.

21. Jacquelet E., Beretti J., De-Tassigny A. et al.Compliance with treatment in Wilson’s disease: on the interest of a multidisciplinary closer follow-up. Rev Med Interne.2018;39:155-160. doi: 10.1016/j.revmed.2017.11.010.

22. Roberts E.A., Schilsky M. L. American Association for Study of Liver Diseases (AASLD) Diagnosis and treatment of Wilson disease: an update. Hepatology. 2008;47:2089-2111. doi: 10.1002/hep.22261.

23. Weiss K.H., Schilsky M., Czlonkowska A. et al. Efficacy and safety of ALXN1840 versus standard of care in Wilson disease: primary results from an ongoing phase 3, randomized, controlled, rater-blinded trial. J Hepatol. 2022;77: Suppl 1: S1-S1. abstract.

24. Dassama L.M., Kenney G. E., Ro S. Y. et al. Methanobactin transport machinery. Proc Natl Acad Sci U S A. 2016;113:13027-13032. doi: 10.1073/pnas.1603578113.

25. Einer C., Munk D. E., Park E. et al. ARBM101 (Methanobactin SB2) drains excess liver copper via biliary excretion in Wilson’s disease rats. Gastroenterology. 2023;165(1):187-200.e7. doi: 10.1053/j.gastro.2023.03.216.

26. Einer C., Leitzinger C., Lichtmannegger J. et al. A high-calorie diet aggravates mitochondrial dysfunction and triggers severe liver damage in Wilson disease rats. Cell Mol Gastroenterol Hepatol. 2019;7:571-596. doi: 10.1016/j.jcmgh.2018.12.005.

27. Schilsky M. L. Wilson disease: current status and the future. Biochimie. 2009;91:1278-1281. doi: 10.1016/j.biochi.2009.07.012.

28. van den Berghe P. V., Stapelbroek J. M., Krieger E. et al. Reduced expression of ATP7B affected by Wilson disease-causing mutations is rescued by pharmacological folding chaperones 4-phenylbutyrate and curcumin. Hepatology. 2009;50:1783-1795. doi: 10.1002/hep.23209.

29. Zhang S., Chen S., Li W. et al. Rescue of ATP7B function in hepatocyte-like cells from Wilson’s disease induced pluripotent stem cells using gene therapy or the chaperone drug curcumin. Hum Mol Genet. 2011;20:3176-3187. doi: 10.1093/hmg/ddr223.

30. Chesi G., Hegde R. N., Iacobacci S. et al. Identification of p38 MAPK and JNK as new targets for correction of Wilson disease-causing ATP7B mutants. Hepatology. 2016;63:1842-1859. doi: 10.1002/hep.28398.

31. Hamilton J.P., Koganti L., Muchenditsi A. et al. Activation of liver X receptor/retinoid X receptor pathway ameliorates liver disease in Atp7B(-/-) (Wilson disease) mice. Hepatology. 2016;63:1828-1841. doi: 10.1002/hep.28406.

32. Wooton-Kee C.R., Jain A. K., Wagner M. et al. Elevated copper impairs hepatic nuclear receptor function in Wilson’s disease. J Clin Invest. 2015;125:3449-3460. doi: 10.1172/JCI78991.

33. Murillo O., Moreno D., Gazquez C. et al. Liver expression of a miniATP7B gene results in long-term restoration of copper homeostasis in a Wilson disease model in mice. Hepatology. 2019;70:108-126. doi: 10.1002/hep.30535.

34. Leng Y., Li P., Zhou L. et al. Long-term correction of copper metabolism in Wilson’s disease mice with AAV8 vector delivering truncated ATP7B. Hum Gene Ther. 2019;30:1494-1504. doi: 10.1089/hum.2019.148.

35. Greig J.A., Nordin J. M.L., Smith M. K. et al. A gene therapy approach to improve copper metabolism and prevent liver damage in a mouse model of Wilson disease. Hum Gene Ther Clin Dev. 2019;30:29-39. doi: 10.1089/humc.2018.219.

36. Merico D., Spickett C., O’Hara M. et al. ATP7B variant c.1934T>G p.Met645Arg causes Wilson disease by promoting exon 6 skipping. NPJ Genom Med. 2020;5:16-16. doi: 10.1038/s41525-020-0123-6.

37. Filippi C., Dhawan A. Current status of human hepatocyte transplantation and its potential for Wilson’s disease. Ann N Y Acad Sci. 2014;1315:50-55. doi: 10.1111/nyas.12386.

38. Jaber F.L., Sharma Y., Gupta S. Demonstrating potential of cell therapy for Wilson’s disease with the Long-Evans cinnamon rat model. Methods Mol Biol. 2017;1506:161-178. doi: 10.1007/978-1-4939-6506-9_11.

39. Cai H., Cheng X., Wang X. P. ATP7B gene therapy of autologous reprogrammed hepatocytes alleviates copper accumulation in a mouse model of Wilson’s disease. Hepatology. 2022;76:1046-1057. doi: 10.1002/hep.32484.

40. Wei R., Yang J., Cheng C-W. et al. CRISPR-targeted genome editing of human induced pluripotent stem cell-derived hepatocytes for the treatment of Wilson’s disease. JHEP Rep. 2022;4:100389-100389. doi: 10.1016/j.jhepr.2021.100389.

41. Iorio G.G., Conforti A., Vallone R. et al. Reproductive function of long-term treated patients with hepatic onset of Wilson’s disease: a prospective study. Reprod Biomed Online. 2021;42:835-841. doi: 10.1016/j.rbmo.2020.12.012.

42. Pfeiffenberger J., Beinhardt S., Gotthardt D. N. et al. Pregnancy in Wilson’s disease: management and outcome. Hepatology. 2018;67:1261-1269. doi: 10.1002/hep.29490.

43. Litwin T., Bembenek J., Antos A. et al. The maternal and fetal outcomes of pregnancy in Wilson’s disease: a systematic literature review and meta-analysis. Biomedicines. 2022;10:2072-2072. doi: 10.3390/biomedicines10092072.

44. Jacquelet E., Poujois A., Pheulpin M. C. et al. Adherence to treatment, a challenge even in treatable metabolic rare diseases: a cross sectional study of Wilson’s disease. J Inherit Metab Dis. 2021;44:1481-1488. doi: 10.1002/jimd.12430.


Review

For citations:


Aitbaev K.A., Murkamilov I.T., Murkamilova Zh.A., Fomin V.V., Kudaibergenova I.O., Yusupova T.F., Yusupov F.A. Wilson’s disease: current and potentially new therapeutic strategies. Experimental and Clinical Gastroenterology. 2024;(4):64-73. (In Russ.) https://doi.org/10.31146/1682-8658-ecg-224-4-64-73

Views: 71


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1682-8658 (Print)