Preview

Экспериментальная и клиническая гастроэнтерология

Расширенный поиск

Нейрокогнитивные и поведенческие эффекты экстракта ладанника шалфеелистного Cistus salviifolius L. при экспериментальном неалкогольном стеатогепатите

https://doi.org/10.31146/1682-8658-ecg-224-4-54-63

Аннотация

Неалкогольный стеатогепатит (НАСГ) является ведущей причиной хронических заболеваний печени в современном мире. Помимо сопутствующих метаболических и сердечно-сосудистых заболеваний, НАСГ связан с увеличением распространенности нейрокогнитивных и психических расстройств. Ладанник шалфеелистный Cistus salviifolius L. (CS) - растение с широким спектром биологической активности, включая возможные психотропные и прокогнитивные эффекты. Учитывая вышеизложенное, настоящее исследование было направлено на изучение потенциальных терапевтических эффектов водного экстракта CS при поведенческих дисфункциях и нарушениях памяти, связанных с экспериментальным алиментарным/токсическим НАСГ у мышей. 90 мышей-самцов C57Bl/6 были рандомизированы на следующие группы: (1) Контроль: НАСГ + отсутствие лечения; (2) CS253: НАСГ + 253 мг·кг-1 м. т. экстракт CS; (3) CS506: НАСГ + 506 мг·кг-1 м. т. Экстракт КС. НАСГ вызывали в течение 3 месяцев, и препараты вводили перорально один раз в день в течение экспериментального периода. По данным тестов «Открытое поле», «Приподнятый крестообразный лабиринт» и «Черно-белая камера» обе дозы экстракта CS моделировали седативный эффект с возможным анксиогенным эффектом у мышей. Кроме того, экстракт CS облегчал дисфункцию пространственной памяти, но не влиял на память распознавания объектов. Возможные механизмы действия экстракта включают усиление кальций-зависимой нейрональной передачи сигналов, а также модуляцию центральной нейротрансмиссии γ-аминомасляной кислоты, ацетилхолина или моноаминов, что требует дальнейшего выяснения. Ключевые слова: Cistus salviifolius L., седативные средства, нарушения памяти, когнитивная дисфункция, тревога, неалкогольный стеатогепатит, поведенческое тестирование, мыши

Об авторах

В. А. Приходько
Федеральное государственное бюджетное образовательное учреждение высшего образования «Санкт-Петербургский государственный химико-фармацевтический университет» Министерства здравоохранения Российской Федерации
Россия


Д. А. Орляхина
Федеральное государственное бюджетное образовательное учреждение высшего образования «Санкт-Петербургский государственный химико-фармацевтический университет» Министерства здравоохранения Российской Федерации
Россия


В. Д. Петрова
Федеральное государственное бюджетное образовательное учреждение высшего образования «Санкт-Петербургский государственный химико-фармацевтический университет» Министерства здравоохранения Российской Федерации
Россия


Е. Д. Семивеличенко
Федеральное государственное бюджетное образовательное учреждение высшего образования «Санкт-Петербургский государственный химико-фармацевтический университет» Министерства здравоохранения Российской Федерации
Россия


Г. А. Плиско
ООО «Полисан»
Россия


В. Е. Карев
ФГБУ Детский научно-клинический центр инфекционных болезней Федерального медико-биологического агентства
Россия


Д. Ю. Ивкин
Федеральное государственное бюджетное образовательное учреждение высшего образования «Санкт-Петербургский государственный химико-фармацевтический университет» Министерства здравоохранения Российской Федерации
Россия


С. В. Оковитый
Федеральное государственное бюджетное образовательное учреждение высшего образования «Санкт-Петербургский государственный химико-фармацевтический университет» Министерства здравоохранения Российской Федерации; Научно-клинический и образовательный центр гастроэнтерологии и гепатологии, федеральное государственное бюджетное образовательное учреждение высшего образования «Санкт-Петербургский государственный университет»
Россия


Список литературы

1. European Association for the Study of the Liver (EASL), European Association for the Study of Diabetes (EASD), European Association for the Study of Obesity (EASO). EASL-EASD-EASO Clinical Practice Guidelines for the management of non-alco-holic fatty liver disease. J. Hepatol. 2016;64:1388-1402. doi: 10.1016/j.jhep.2015.11.004.

2. Monelli F., Venturelli F., Bonilauri L. et al. Systematic review of existing guidelines for NAFLD assessment. He-patoma Res. 2021;7:25. doi: 10.20517/2394-5079.2021.03.

3. Eslam M., Sanyal A. J., George J.; International Consensus Panel. MAFLD: A Consensus-Driven Proposed Nomenclature for Metabolic Associated Fatty Liver Disease. Gastroenterology 2020;158:1999-2014.e1. doi: 10.1053/j.gastro.2019.11.312.

4. Estes C., Razavi H., Loomba R., Younossi Z., Sanyal A. J. Modeling the epidemic of nonalcoholic fatty liver disease demon- strates an exponential increase in burden of disease. Hepatology 2018;67:123-133. doi: 10.1002/hep.29466.

5. Younossi Z.M., Koenig A. B., Abdelatif D., Fazel Y., Henry L., Wymer M. Global epidemiology of nonalcoholic fatty liver disease-Meta-analytic assessment of prevalence, incidence, and outcomes. Hepatology 2016;64:73-84. doi: 10.1002/hep.28431.

6. Xia M.F., Bian H., Gao X. NAFLD and Diabetes: Two Sides of the Same Coin? Rationale for Gene-Based Personalized NAFLD Treatment. Front. Pharmacol. 2019;10:877. doi: 10.3389/fphar.2019.00877.

7. Prikhodko V.A., Bezborodkina N. N., Okovityi S. V. Pharmacotherapy for Non-Alcoholic Fatty Liver Disease: Emerging Targets and Drug Candidates. Biomedicines 2022;10:274. doi: 10.3390/biomedicines10020274.

8. Prikhodko V.A., Sysoev Yu.I., Poveryaeva M. A. et al. Effects of empagliflozin and l-ornithine l-aspartate on behavior, cognitive functions, and physical performance in mice with experimentally induced steatohepatitis. Bull.Rus. State. Med. 2020;3:49-57. doi: 10.24075/brsmu.2020.034.

9. Moretti R., Caruso P., Gazzin S. Non-alcoholic fatty liver disease and neurological defects. Ann. Hepatol. 2019;18:563-570. doi: 10.1016/j.aohep.2019.04.007.

10. Kjærgaard K., Mikkelsen A. C.D., Wernberg C. W. et al. Cognitive Dysfunction in Non-Alcoholic Fatty Liver Disease-Current Knowledge, Mechanisms and Perspectives. J. Clin. Med. 2021;10:673. doi: 10.3390/jcm10040673.

11. Colognesi M., Gabbia D., De Martin S. Depression and Cognitive Impairment-Extrahepatic Manifestations of NAFLD and NASH. Biomedicines 2020;8:229. doi: 10.3390/biomedicines8070229.

12. El Euch S. K., Bouajila J., Bouzouita N. Chemical composition, biological and cytotoxic activities of Cistus salviifolius flower buds and leaves extract. Ind. Crops Prod. 2015;76:1100-1105. doi: 10.1016/j.indcrop.2015.08.033.

13. Álvarez-Martínez F.J., Rodríguez J. C., Borrás-Rocher F., Barrajón-Catalán E., Micol V. The antimicrobial capacity of Cistus salviifolius and Punica granatum plant extracts against clinical pathogens is related to their polyphenolic composition. Sci. Rep. 2021;11:588. doi: 10.1038/s41598-020-80003-y.

14. Sayah K., Mrabti H. N., Belarj B., Kichou F., Cherrah Y., El Abbes Faouzi M. Evaluation of antidiabetic effect of Cistus salviifolius L. (Cistaceae) in streptozotocin-nicotinamide induced diabetic mice. J. Basic Clin. Physiol. Pharmacol. 2020;32:121-127. doi: 10.1515/jbcpp-2020-0044.

15. Esaulkova Ya.L., Muryleva A. A., Sinegubova E. O., Belyaevskaya S. V., Garshinina A. V., Kireeva M. A., Volobueva A. S., Slita A. V., Kadyrova R. A., Zarubaev V. V. Mechanisms of Antiviral Activity of Cistus Salviifolius Extract Against Human Respiratory Viruses. Antibiot Khimioter = Antibiotics and Chemotherapy. 2020;65(7-8):8-17. (In Russ.) doi: 10.37489/0235-2990-2020-65-7-8-8-17.

16. Boubekeur S., Messaoudi M., Awuchi C. G. et al. Biological properties and polyphenols content of Algerian Cistus salviifolius L. aerial parts. Eur. J. Biol. Res. 2022;12:163-180. doi: 10.5281/zenodo.6561505.

17. Sayah K., Chemlal L., Marmouzi I., El Jemli M., Cherrah Y., El Abbes Faouzi M. In vivo anti-inflammatory and analgesic activities of Cistus salviifolius (L.) and Cistus monspeliensis (L.) aqueous extracts. S. Afr. J. Bot. 2017;113:160-163. doi: 10.1016/j.sajb.2017.08.015.

18. Orhan N., Aslan M., Süküroğlu M., Deliorman Orhan D. In vivo and in vitro antidiabetic effect of Cistus laurifolius L. and detection of major phenolic compounds by UPLC-TOF-MS analysis. J. Ethnopharmacol. 2013;146:859-865. doi: 10.1016/j.jep.2013.02.016.

19. Hacioglu C., Kar F., Kara Y., Yucel E., Donmez D. B., Sentürk H., Kanbak G.Comparative effects of metformin and Cistus laurifolius L. extract in streptozotocin-induced diabetic rat model: oxidative, inflammatory, apoptotic, and histopathological analyzes. Environ. Sci. Pollut. Res.Int. 2021;28:57888-57901. doi: 10.1007/s11356-021-14780-y.

20. Kühn C., Arapogianni N. E., Halabalaki M. et al. Constituents from Cistus salvifolius (Cistaceae) activate peroxisome proliferator-activated receptor-γ but not -δ and stimulate glucose uptake by adipocytes. Planta Med. 2011;77:346-353. doi: 10.1055/s-0030-1250382.

21. Sayah K., Marmouzi I., Naceiri Mrabti H., Cherrah Y., Faouzi M. E. Antioxidant Activity and Inhibitory Potential of Cistus salviifolius (L.) and Cistus monspeliensis (L.) Aerial Parts Extracts against Key Enzymes Linked to Hyperglycemia. Biomed. Res.Int. 2017;2017:2789482. doi: 10.1155/2017/2789482.

22. Küpeli E., Orhan D. D., Yesilada E. Effect of Cistus laurifolius L. leaf extracts and flavonoids on acetaminophen-induced hepatotoxicity in mice. J. Ethnopharmacol. 2006;103:455-460. doi: 10.1016/j.jep.2005.08.038.

23. Tsuchida T., Lee Y. A., Fujiwara N. et al. A simple diet- and chemical-induced murine NASH model with rapid progression of steatohepatitis, fibrosis and liver cancer. J. Hepatol. 2018;69:385-395. doi: 10.1016/j.jhep.2018.03.011.

24. Russian Drug Register. Forcis: Patient information leaflet. (in Russ.) Available at: https://www.rlsnet.ru/baa/forcis-68924 (accessed on 16 Nov 2023).

25. Walsh R.N., Cummins R. A. The Open-Field Test: a critical review. Psychol. Bull. 1976;83:482-504.

26. Walf A.A., Frye C. A. The use of the elevated plus maze as an assay of anxiety-related behavior in rodents. Nat. Protoc. 2007;2(2):322-328. doi: 10.1038/nprot.2007.44.

27. Bourin M., Hascoët M. The mouse light/dark box test. Eur. J. Pharmacol. 2003;463:55-65. doi: 10.1016/s0014-2999(03)01274-3.

28. Deacon R.M., Rawlins J. N. T-maze alternation in the rodent. Nat. Protoc. 2006;1:7-12. doi: 10.1038/nprot.2006.2.

29. Leger M., Quiedeville A., Bouet V., Haelewyn B., Boulouard M., Schumann-Bard P., Freret T. Object recognition test in mice. Nat. Protoc. 2013;8:2531-2537. doi: 10.1038/nprot.2013.155.

30. Hervé M. RVAideMemoire: Testing and Plotting Procedures for Biostatistics. R package version 0.9-81-2. 2021. Available at: https://CRAN.R-project.org/package=RVAideMemoire (accessed on 16 Nov 2023).

31. Prikhodko V.A., Karev V. E., Sysoev Y. I., Ivkin D. Y., Okovityi S. V. A Simple Algorithm for Semiquantitative Analysis of Scored Histology Data in the R Environment, on the Example of Murine Non-Alcoholic Steatohepatitis Pharmacotherapy. Livers 2022;2:412-424. doi: 10.3390/livers2040031.

32. Bedossa P., Poynard T. An algorithm for the grading of activity in chronic hepatitis C. The METAVIR Cooperative Study Group. Hepatology 1996;24(2):289-293. doi: 10.1002/hep.510240201.

33. Prikhodko V. A. Effects of Ornithine Aspartate and Empagliflozin on Memory Deficit Symptoms in Experimental Steatohepatitis. Journal Biomed. 2022;18(3):128-132. (In Russ.) doi: 10.33647/2074-5982-18-3-128-132.

34. Pádua-Reis M., Nôga D. A., Tort A. B.L., Blunder M. Diazepam causes sedative rather than anxiolytic effects in C57BL/6J mice. Sci. Rep. 2021;11:9335. doi: 10.1038/s41598-021-88599-5.

35. Xu L., Liu M. Z., Yang Y. Y. et al. Geraniol enhances inhibitory inputs to the paraventricular thalamic nucleus and induces sedation in mice. Phytomedicine 2022;98:153965. doi: 10.1016/j.phymed.2022.153965.

36. Seredenin S. B., Blednov Yu.A, Badyshtov B. A., Gordey M. L., Nagovitsina Y. A. Pharmacogenetic analysis of mechanisms of emotional stress: effects of benzodiazepines. Ann. Ist. Super. Sanita. 1990;26(1):81-87.

37. Fahey J. M., Pritchard G. A., Pratt J. S., Shader R. I., Greenblatt D. J. Lorazepam attenuates the behavioral effects of dizocilpine. Pharmacol. Biochem. Behav. 1999;62:103-110. doi: 10.1016/s0091-3057(98)00145-2.

38. Mataqueiro M. I., D’Angelis F.H.F., De-Caroli-Neto A., Rossi C. A., Queiroz-Neto A.Comparative study of the sedative and antinociceptive effects of levomepromazine, azaperone and midazolam in laboratory animals. Arq. Bras. Med. Vet. Zootec. 2004;56:340-345. doi: 10.1590/S0102-09352004000300009.

39. Navarro E., Alonso S. J., Navarro R. Toxicity and neuropharmacological effects of elenine. Evid. -based Complement. Altern. Med. 2011;2011:312524. doi: 10.1155/2011/312524.

40. Serdyuk S. E., Gmiro V. E. Mesaton (phenylephrine) Potentiates the Antidepressant and Eliminates the Sedative Action of Amitriptyline in Rats. Neurosci. Behav. Physiol. 2015;45:760-764. doi: 10.1007/s11055-015-0140-6.

41. Onaolapo A. Y., Oyewole O. O., Onaolapo O. J., Taylor G. Subchronic Amitriptyline Influences Open-field Behaviours and Spontaneous Working-memory in Healthy Mice. Adv. Pharmacol. Pharm. 2017;5:1-11. doi: 10.13189/app.2017.050101.

42. Drapier D., Bentué-Ferrer D., Laviolle B., Millet B., Allain H., Bourin M., Reymann J. M. Effects of acute fluoxetine, paroxetine and desipramine on rats tested on the elevated plus-maze. Behav. Brain Res. 2007;176:202-209. doi: 10.1016/j.bbr.2006.10.002.

43. Kalueff A. V., Tuohimaa P. Mouse grooming microstructure is a reliable anxiety marker bidirectionally sensitive to GABAergic drugs. Eur. J. Pharmacol. 2005;508:147-153. doi: 10.1016/j.ejphar.2004.11.054.

44. Estanislau C. Cues to the usefulness of grooming behavior in the evaluation of anxiety in the elevated plus-maze. Psychol. Neurosci. 2012;5:105-112. doi: 10.3922/j.psns.2012.1.14.

45. de Andrés A. I., Gómez-Serranillos M.P., Iglesias I., Villar A. M. Effects of extract of Cistus populifolius L. on the central nervous system. Phytother. Res. 1999;13:575-579.

46. Broadbent N. J., Squire L. R., Clark R. E. Spatial memory, recognition memory, and the hippocampus. Proc. Natl. Acad. Sci. U. S. A. 2004;101:14515-14520. doi: 10.1073/pnas.0406344101.

47. Duva C. A., Floresco S. B., Wunderlich G. R., Lao T. L., Pinel J. P., Phillips A. G. Disruption of spatial but not object-recognition memory by neurotoxic lesions of the dorsal hippocampus in rats. Behav. Neurosci. 1997;111:1184-1196. doi: 10.1037//0735-7044.111.6.1184.

48. Kim C. K., Kalynchuk L. E., Kornecook T. J., Mumby D. G., Dadgar N. A., Pinel J. P., Weinberg J. Object-recognition and spatial learning and memory in rats prenatally exposed to ethanol. Behav. Neurosci. 1997;111:985-995. doi: 10.1037//0735-7044.111.5.985.

49. Cavoy A., Delacour J. Spatial but not object recognition is impaired by aging in rats. Physiol. Behav. 1993;53:527-530. doi: 10.1016/0031-9384(93)90148-9.

50. Davis H. P., Idowu A., Gibson G. E. Improvement of 8-arm maze performance in aged Fischer 344 rats with 3,4-diaminopyridine. Exp. Aging. Res. 1983;9:211-214. doi: 10.1080/03610738308258454.

51. Barnes C. A., Eppich C., Rao G. Selective improvement of aged rat short-term spatial memory by 3,4-diaminopyridine. Neurobiol. Aging 1989;10:337-341. doi: 10.1016/0197-4580(89)90045-6.

52. Huang X., Huang P., Huang L. et al. A Visual Circuit Related to the Nucleus Reuniens for the Spatial-Memory-Promoting Effects of Light Treatment. Neuron 2021;109:347-362.e7. doi: 10.1016/j.neuron.2020.10.023.

53. Firdapse (amifampridine phosphate): ARIA Sufficiency Memo for Pregnancy Safety Concerns. Available at: https://www.accessdata.fda.gov/drugsatfda_docs/nda/2018/208078Orig1s000OtherR.pdf (accessed on 16 Nov 2023)

54. Yiannopoulou K. G., Papageorgiou S. G. Current and Future Treatments in Alzheimer Disease: An Update. J. Cent. Nerv. Syst. Dis. 2020;12:1179573520907397. doi: 10.1177/1179573520907397.

55. Wang X., Zhang C., Szábo G., Sun Q. Q. Distribution of CaMKIIα expression in the brain in vivo, studied by CaMKIIα-GFP mice. Brain Res. 2013;1518:9-25. doi: 10.1016/j.brainres.2013.04.042.

56. Sałaciak K., Koszałka A., Żmudzka E., Pytka K. Calcium/Calmodulin-Dependent Kinases II and IV as Therapeutic Targets in Neurodegenerative and Neuropsychiatric Disorders.Int. J. Mol. Sci. 2021;22:4307. doi: 10.3390/ijms22094307.

57. Zhang X. H., Ma Z. G., Rowlands D. K. et al. Flavonoid Myricetin Modulates GABA(A) Receptor Activity through Activation of Ca(2+) Channels and CaMK-II Pathway. Evid. -based Complement. Altern. Med. 2012;2012:758097. doi: 10.1155/2012/758097.

58. Sawamoto A., Okuyama S., Amakura Y., Yoshimura M., Yamada T., Yokogoshi H., Nakajima M., Furukawa Y. 3,5,6,7,8,3’,4’-Heptamethoxyflavone Ameliorates Depressive-Like Behavior and Hippocampal Neurochemical Changes in Chronic Unpredictable Mild Stressed Mice by Regulating the Brain-Derived Neurotrophic Factor: Requirement for ERK Activation.Int. J. Mol. Sci. 2017;18:2133. doi: 10.3390/ijms18102133.

59. Zhong J., Li G., Xu H., Wang Y., Shi M. Baicalin ameliorates chronic mild stress-induced depression-like behaviors in mice and attenuates inflammatory cytokines and oxidative stress. Braz. J. Med. Biol. Res. 2019;52: e8434. doi: 10.1590/1414-431X20198434.

60. Gazola A. C., Costa G. M., Zucolotto S. M., Castellanos L., Ramos F. A., de Lima T. C.M., Schenkel E. P. The sedative activity of flavonoids from Passiflora quadrangularis is mediated through the GABAergic pathway. Biomed. Pharmacother. 2018;100:388-393. doi: 10.1016/j.biopha.2018.02.002.

61. Min J. W., Kong W. L., Han S., Bsoul N., Liu W. H., He X. H., Sanchez R. M., Peng, B. W. Vitexin protects against hypoxic-ischemic injury via inhibiting Ca2+/Calmodulin-dependent protein kinase II and apoptosis signaling in the neonatal mouse brain. Oncotarget 2017;8:25513-25524. doi: 10.18632/oncotarget.16065.

62. Yau J. L., Noble J., Hibberd C., Rowe W. B., Meaney M. J., Morris R. G., Seckl J. R. Chronic treatment with the antidepressant amitriptyline prevents impairments in water maze learning in aging rats. J. Neurosci. 2002;22:1436-1442. doi: 10.1523/JNEUROSCI.22-04-01436.2002.

63. Orsetti M., Colella L., Dellarole A., Canonico P. L., Ghi P. Modification of spatial recognition memory and object discrimination after chronic administration of haloperidol, amitriptyline, sodium valproate or olanzapine in normal and anhedonic rats.Int. J. Neuropsychopharmacol. 2007;10:345-357. doi: 10.1017/S1461145706006705.


Рецензия

Для цитирования:


Приходько В.А., Орляхина Д.А., Петрова В.Д., Семивеличенко Е.Д., Плиско Г.А., Карев В.Е., Ивкин Д.Ю., Оковитый С.В. Нейрокогнитивные и поведенческие эффекты экстракта ладанника шалфеелистного Cistus salviifolius L. при экспериментальном неалкогольном стеатогепатите. Экспериментальная и клиническая гастроэнтерология. 2024;(4):54-63. https://doi.org/10.31146/1682-8658-ecg-224-4-54-63

For citation:


Prikhodko V.A., Orlyakhina D.A., Petrova V.D., Semivelichenko E.D., Plisko G.A., Karev V.E., Ivkin D.Yu., Okovityi S.V. Neurocognitive and behavioural effects of sage-leaved rock-rose Cistus salviifolius L. extract in experimental non-alcoholic steatohepatitis. Experimental and Clinical Gastroenterology. 2024;(4):54-63. (In Russ.) https://doi.org/10.31146/1682-8658-ecg-224-4-54-63

Просмотров: 61


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 1682-8658 (Print)