Методы машинного обучения и анализа больших данных для установления молекулярных механизмов воздействия рацетамов на метаболизм жировой ткани
https://doi.org/10.31146/1682-8658-ecg-225-5-12-25
Аннотация
Об авторах
И. Ю. ТоршинРоссия
О. А. Громова
Россия
Л. Б. Лазебник
Россия
Список литературы
1. Badalyan O.L., Savenkov A. A., Avakyan G. N., Yutskova E. V. Possibilities of application of nootropic drugs in treatment of epilepsy (literature review). Epilepsy and paroxysmal conditions. 2013;5(2):24-30. (In Russ.)@@ Бадалян О. Л., Савенков А. А., Авакян Г. Н., Юцкова Е. В. Возможности применения ноотропных препаратов в комплексном лечении эпилепсии. Эпилепсия и пароксизмальные состояния. 2013;5(2):24-30.
2. Kovalev G.I., Akhapkina V. I., Abaimov D. A., Firstova Yu. Yu. Phenotropil as a receptor modulator of synaptic neurotransmission. Nervous diseases. 2007;(4):22-26. (in Russ.)@@ Ковалев Г. И., Ахапкина В. И., Абаимов Д. А., Фирстова Ю. Ю. Фенотропил как рецепторный модулятор синаптической нейропередачи. Нервные болезни. 2007;(4):22-26.
3. Tokareva E. R. Loginova N. B. Possibilities of Neuroprotective Therapy using Actitropil (Fonturacetam) in Post-COVID Patients with Comorbid Neurological Diseases. Nervous Diseases. 2023;(3):62-68. (in Russ.) doi: 10.24412/2226-0757-2023-13008.@@ Токарева Е. Р., Логинова Н. Б. Возможности нейропротективной терапии препаратом Актитропил (фонтурацетам) у пациентов в постковидном периоде с коморбидной неврологической патологией. Нервные болезни, 2023;(3):62-68. doi: 10.24412/2226-0757-2023-13008
4. Zvejniece L., Svalbe B., Vavers E., Makrecka-Kuka M., Makarova E., Liepins V., Kalvinsh I., Liepinsh E., Dambrova M. S-phenylpiracetam, a selective DAT inhibitor, reduces body weight gain without influencing locomotor activity. Pharmacol Biochem Behav. 2017 Sep;160:21-29. doi: 10.1016/j.pbb.2017.07.009.
5. Gromova O. A., Torshin I. Yu. Micronutrients and reproductive health. Management. 2nd edition revised and expanded. Moscow. GEOTAR-Media Publ., 2022, 832 pp. (in Russ.) ISBN 978-5-9704-6786-2.@@ Громова О. А., Торшин И. Ю. Микронутриенты и репродуктивное здоровье. Руководство. 2-е издание переработанное и дополненное. M: ГЭОТАР-Медиа, 2022, 832 c. ISBN 978-5-9704-6786-2.
6. Zhang F., Liu L., Zhang C., Ji S., Mei Z., Li T. Association of Metabolic Syndrome and Its Components With Risk of Stroke Recurrence and Mortality: A Meta-analysis. Neurology. 2021 Aug 17;97(7): e695-e705. doi: 10.1212/WNL.0000000000012415.
7. Atti A. R., Valente S., Iodice A., Caramella I., Ferrari B., Albert U., Mandelli L., De Ronchi D. Metabolic Syndrome, Mild Cognitive Impairment, and Dementia: A Meta-Analysis of Longitudinal Studies. Am J Geriatr Psychiatry. 2019 Jun;27(6):625-637. doi: 10.1016/j.jagp.2019.01.214.
8. Al-Hussaniy H.A., Alburghaif A. H., Naji M. A. Leptin hormone and its effectiveness in reproduction, metabolism, immunity, diabetes, hopes and ambitions. J Med Life. 2021 Sep-Oct;14(5):600-605. doi: 10.25122/jml-2021-0153.
9. Beeler J. A., Faust R. P., Turkson S., Ye H., Zhuang X. Low Dopamine D2 Receptor Increases Vulnerability to Obesity Via Reduced Physical Activity, Not Increased Appetitive Motivation. Biol Psychiatry. 2016 Jun 1;79(11):887-97. doi: 10.1016/j.biopsych.2015.07.009.
10. Ribeiro G., Maia A., Cotovio G., Oliveira F. P.M., Costa D. C., Oliveira-Maia A. J. Striatal dopamine D2-like receptors availability in obesity and its modulation by bariatric surgery: a systematic review and meta-analysis. Sci Rep. 2023 Mar 27;13(1):4959. doi: 10.1038/s41598-023-31250-2.
11. Labouesse M. A., Sartori A. M., Weinmann O., Simpson E. H., Kellendonk C., Weber-Stadlbauer U. Striatal dopamine 2 receptor upregulation during development predisposes to diet-induced obesity by reducing energy output in mice. Proc Natl Acad Sci U S A. 2018 Oct 9;115(41):10493-10498. doi: 10.1073/pnas.1800171115.
12. Tabatabaei Dakhili S. A., Greenwell A. A., Yang K. et al. The Antipsychotic Dopamine 2 Receptor Antagonist Diphenylbutylpiperidines Improve Glycemia in Experimental Obesity by Inhibiting Succinyl-CoA:3-Ketoacid CoA Transferase. Diabetes. 2023 Jan 1;72(1):126-134. doi: 10.2337/db22-0221.
13. García-Cárceles J., Decara J. M., Vázquez-Villa H. et al. A Positive Allosteric Modulator of the Serotonin 5-HT(2C) Receptor for Obesity. J Med Chem. 2017 Dec 14;60(23):9575-9584. doi: 10.1021/acs.jmedchem.7b00994.
14. Choi W. G., Choi W., Oh T. J. et al. Inhibiting serotonin signaling through HTR2B in visceral adipose tissue improves obesity-related insulin resistance. J Clin Invest. 2021 Dec 1;131(23): e145331. doi: 10.1172/JCI145331.
15. Kesić M., Baković P., Horvatiček M., Proust B. L.J., Štefulj J., Čičin-Šain L. Constitutionally High Serotonin Tone Favors Obesity: Study on Rat Sublines With Altered Serotonin Homeostasis. Front Neurosci. 2020 Mar 25;14:219. doi: 10.3389/fnins.2020.00219.
16. Torshin I. Yu (Ed. Gromova OA). Sensing the change from molecular genetics to personalized medicine. Nova Biomedical Books, NY, USA, 2009, In “Bioinformatics in the Post-Genomic Era” series. ISBN 1-60692-217-0.
17. Torshin I. Yu., Gromova O. A., Fedotova L. E., et al. Chemoreactomic analysis of citrulline malate molecules. Nevrologiya, neiropsikhiatriya, psikhosomatika = Neurology, neuropsychiatry, psychosomatics. 2017;9(2):30-35. (in Russ.) doi: 10.14412/2074-2711-2017-2-30-3.@@ Торшин И. Ю., Громова О. А., Федотова Л. Э. и др. Хемореактомный анализ молекул цитруллина и малата. Неврология, нейропсихиатрия, психосоматика. 2017;9(1):30-35.
18. Torshin I. Yu. Bioinformatics in the post-genomic era: physiology and medicine. Nova Biomedical Books, NY, USA (2007). ISBN 1-60021-752-4.
19. Rudakov K. V., Torshin I. Yu. Selection of informative feature values on the basis of solvability criteria in the problem of protein secondary structure recognition. Doklady Akademii Nauk. 2011;441(1):24-28. (in Russ.)@@ Рудаков К. В., Торшин И. Ю. Об отборе информативных значений признаков на базе критериев разрешимости в задаче распознавания вторичной структуры белка. Доклады Академии наук. 2011;441(1):24-28.
20. Torshin I. Y. On solvability, regularity, and locality of the problem of genome annotation. Pattern Recognition and Image Analysis. Advances in Mathematical Theory and Applications. 2010;20(3):386-395. (in Russ.)
21. Torshin I. Yu., Gromova O. A., Sardaryan I. S., Fedotova L. E.Comparative chemoreactomy analysis of mexidol. Journal of Neurology and Psychiatry n. a. S. S. Korsakov. 2017;117(1-2):75-83. (in Russ.)@@ Торшин И. Ю., Громова О. А., Сардарян И. С., Федотова Л. Э. Сравнительный хемореактомный анализ мексидола. Журнал неврологии и психиатрии им. C. C. Корсакова. 2017;117(1-2):75-83.
22. Bolton E., Wang Y., Thiessen P. A., Bryant S. H. PubChem: Integrated Platform of Small Molecules and Biological Activities. Chapter 12 IN Annual Reports in Computational Chemistry, Volume 4, American Chemical Society, Washington, DC, 2008 Apr.
23. Wishart D. S., Tzur D., Knox C. et al. HMDB: the Human Metabolome Database. Nucleic Acids Res. 2007 Jan;35(Database issue): D521-6. doi: 10.1093/nar/gkl923.
24. Torshin I. Yu., Rudakov K. V. On the Procedures of Generation of Numerical Features over Partitions of Sets of Objects in the Problem of Predicting Numerical Target Variables. Pattern Recognition and Image Analysis. 2019;29(4):654-667. doi: 10.1134/S1054661819040175.
25. Paterlini S., Panelli R., Gioiosa L. et al. Conditional Inactivation of Limbic Neuropeptide Y-1 Receptors Increases Vulnerability to Diet-Induced Obesity in Male Mice.Int J Mol Sci. 2021 Aug 14;22(16):8745. doi: 10.3390/ijms22168745.
26. Vähätalo L. H., Ruohonen S. T., Ailanen L., Savontaus E. Neuropeptide Y in noradrenergic neurons induces obesity in transgenic mouse models. Neuropeptides. 2016 Feb;55:31-7. doi: 10.1016/j.npep.2015.11.088.
27. Gumbs M. C.R., Eggels L., Kool T. et al. Neuropeptide Y Signaling in the Lateral Hypothalamus Modulates Diet Component Selection and is Dysregulated in a Model of Diet-Induced Obesity. Neuroscience. 2020 Nov 1;447:28-40. doi: 10.1016/j.neuroscience.2019.12.014.
28. Ailanen L., Vähätalo L. H., Salomäki-Myftari H., Mäkelä S., Orpana W., Ruohonen S. T., Savontaus E. Peripherally Administered Y(2)-Receptor Antagonist BIIE0246 Prevents Diet-Induced Obesity in Mice With Excess Neuropeptide Y, but Enhances Obesity in Control Mice. Front Pharmacol. 2018 Apr 5;9:319. doi: 10.3389/fphar.2018.00319.
29. Marcos P., Coveñas R. Regulation of Homeostasis by Neuropeptide Y: Involvement in Food Intake. Curr Med Chem. 2022;29(23):4026-4049. doi: 10.2174/0929867328666211213114711.
30. Nagi K., Habib A. M. Biased signaling: A viable strategy to drug ghrelin receptors for the treatment of obesity. Cell Signal. 2021 Jul;83:109976. doi: 10.1016/j.cellsig.2021.109976.
31. Wald H. S., Ghidewon M. Y., Hayes M. R., Grill H. J. Hindbrain ghrelin and liver-expressed antimicrobial peptide 2, ligands for growth hormone secretagogue receptor, bidirectionally control food intake. Am J Physiol Regul Integr Comp Physiol. 2023 Apr 1;324(4): R547-R555. doi: 10.1152/ajpregu.00232.2022.
32. Shimizu K., Kaneko K., Koyama D., Ohinata K. Soy-fortelin: A ghrelin sensitivity-enhancing peptide that stimulates food intake in aged mice. FASEB J. 2023 Apr;37(4): e22836. doi: 10.1096/fj.202201482R.
33. Guillory B., Chen J. A., Patel S., Luo J. et al. Deletion of ghrelin prevents aging-associated obesity and muscle dysfunction without affecting longevity. Aging Cell. 2017 Aug;16(4):859-869. doi: 10.1111/acel.12618.
34. Wasinski F., Barrile F., Pedroso J. A.B. et al. Ghrelin-induced Food Intake, but not GH Secretion, Requires the Expression of the GH Receptor in the Brain of Male Mice. Endocrinology. 2021 Jul 1;162(7): bqab097. doi: 10.1210/endocr/bqab097.
35. Singh O., Ogden S. B., Varshney S. et al. Ghrelin-responsive mediobasal hypothalamic neurons mediate exercise-associated food intake and exercise endurance. JCI Insight. 2023 Dec 22;8(24): e172549. doi: 10.1172/jci.insight.172549.
36. Hyland L., Park S. B., Abdelaziz Y., Abizaid A. Ghrelin infused into the dorsomedial hypothalamus of male mice increases food intake and adiposity. Physiol Behav. 2020 Jun 1;220:112882. doi: 10.1016/j.physbeh.2020.112882.
37. Wang M., Sun X., Guo F., Luan X., Wang C., Xu L. Activation of orexin-1 receptors in the amygdala enhances feeding in the diet-induced obesity rats: Blockade with μ-opioid antagonist. Biochem Biophys Res Commun. 2018 Sep 18;503(4):3186-3191. doi: 10.1016/j.bbrc.2018.08.120.
38. Díaz-Rúa A., Chivite M., Comesaña S., Conde-Sieira M., Soengas J. L. The Opioid System in Rainbow Trout Telencephalon Is Probably Involved in the Hedonic Regulation of Food Intake. Front Physiol. 2022 Mar 1;13:800218. doi: 10.3389/fphys.2022.800218.
39. Sandoval-Caballero C., Luarte L., Jiménez Y. et al. Meta-analysis of pre-clinical studies on the effects of opioid receptor ligands on food intake, motivation, and choice. Neurosci Biobehav Rev. 2023 Sep;152:105288. doi: 10.1016/j.neubiorev.2023.105288.
40. Valbrun L. P., Zvonarev V. The Opioid System and Food Intake: Use of Opiate Antagonists in Treatment of Binge Eating Disorder and Abnormal Eating Behavior. J Clin Med Res. 2020 Feb;12(2):41-63. doi: 10.14740/jocmr4066.
41. Romero-Picó A., Novelle M. G., Al-Massadi O. et al. Kappa-Opioid Receptor Blockade Ameliorates Obesity Caused by Estrogen Withdrawal via Promotion of Energy Expenditure through mTOR Pathway.Int J Mol Sci. 2022 Mar 14;23(6):3118. doi: 10.3390/ijms23063118.
42. Choi H. S., Kim C. S., Hwang C. K. et al. The opioid ligand binding of human mu-opioid receptor is modulated by novel splice variants of the receptor. Biochem Biophys Res Commun. 2006 May 19;343(4):1132-40. doi: 10.1016/j.bbrc.2006.03.084.
43. Oddi S., Dainese E., Sandiford S. et al. Effects of palmitoylation of Cys(415) in helix 8 of the CB(1) cannabinoid receptor on membrane localization and signalling. Br J Pharmacol. 2012 Apr;165(8):2635-51. doi: 10.1111/j.1476-5381.2011.01658.x.
44. Kantonen T., Pekkarinen L., Karjalainen T. et al. Obesity risk is associated with altered cerebral glucose metabolism and decreased μ-opioid and CB(1) receptor availability.Int J Obes (Lond). 2022 Feb;46(2):400-407. doi: 10.1038/s41366-021-00996-y.
45. Fois G. R., Fattore L., Murineddu G., Salis A., Pintore G., Asproni B., Pinna G. A., Diana M. The novel cannabinoid antagonist SM-11 reduces hedonic aspect of food intake through a dopamine-dependent mechanism. Pharmacol Res. 2016 Nov;113(Pt A):108-115. doi: 10.1016/j.phrs.2016.08.012.
46. Chen W., Chen Z., Xue N., Zheng Z., Li S., Wang L. Effects of CB1 receptor blockade on monosodium glutamate induced hypometabolic and hypothalamic obesity in rats. Naunyn Schmiedebergs Arch Pharmacol. 2013 Aug;386(8):721-32. doi: 10.1007/s00210-013-0875-y.
47. Jourdan T., Godlewski G., Cinar R. et al. Activation of the Nlrp3 inflammasome in infiltrating macrophages by endocannabinoids mediates beta cell loss in type 2 diabetes. Nat Med. 2013 Sep;19(9):1132-40. doi: 10.1038/nm.3265.
48. Friedrichsen M. H., Endahl L., Kreiner F. F., Goldwater R., Kankam M., Toubro S., Nygård S. B. Results from three phase 1 trials of NNC9204-1177, a glucagon/GLP-1 receptor co-agonist: Effects on weight loss and safety in adults with overweight or obesity. Mol Metab. 2023 Dec;78:101801. doi: 10.1016/j.molmet.2023.101801.
49. Nonogaki K., Kaji T. Liraglutide, a GLP-1 Receptor Agonist, Which Decreases Hypothalamic 5-HT2A Receptor Expression, Reduces Appetite and Body Weight Independently of Serotonin Synthesis in Mice. J Diabetes Res. 2018 Feb 1;2018:6482958. doi: 10.1155/2018/6482958.
50. Haq Ansari H. U., Qazi S. U., Sajid F. et al. Efficacy and safety of glucagon-like-peptide-1 receptor agonists on body weight and cardiometabolic parameters in individuals with obesity and without diabetes: A systematic review and meta-analysis. Endocr Pract. 2023 Nov 27: S1530-891X(23)00758-9. doi: 10.1016/j.eprac.2023.11.007.
51. Li Q., Yu Q., Lin L., Zhang H., Peng M., Jing C., Xu G. Hypothalamic peroxisome proliferator-activated receptor gamma regulates ghrelin production and food intake. Neuropeptides. 2018 Jun;69:39-45. doi: 10.1016/j.npep.2018.04.002.
52. Gado M., Heinrich A., Wiedersich D. et al. Activation of β-adrenergic receptor signaling prevents glucocorticoid-induced obesity and adipose tissue dysfunction in male mice. Am J Physiol Endocrinol Metab. 2023 Jun 1;324(6): E514-E530. doi: 10.1152/ajpendo.00259.2022.
53. Hong J., Shi Y., Chen J., Mi M., Ren Q., Zhang Y., Shen M., Bu J., Kang Y. Konjac glucomannan attenuate high-fat diet-fed obesity through enhancing β-adrenergic-mediated thermogenesis in inguinal white adipose tissue in mice. Glycoconj J. 2023 Oct;40(5):575-586. doi: 10.1007/s10719-023-10131-w.
54. Dąbrowska A. M., Dudka J. Mirabegron, a Selective β3-Adrenergic Receptor Agonist, as a Potential Anti-Obesity Drug. J Clin Med. 2023 Nov 2;12(21):6897. doi: 10.3390/jcm12216897.
55. Xie J., Liu M., Liu H., Jin Z., Guan F., Ge S., Yan J., Zheng M., Cai D., Liu J. Zeaxanthin ameliorates obesity by activating the β3-adrenergic receptor to stimulate inguinal fat thermogenesis and modulating the gut microbiota. Food Funct. 2021 Dec 13;12(24):12734-12750. doi: 10.1039/d1fo02863d.
56. Chaouche L., Marcotte F., Maltais-Payette I., Tchernof A. Glutamate and obesity - what is the link? Curr Opin Clin Nutr Metab Care. 2024 Jan 1;27(1):70-76. doi: 10.1097/MCO.0000000000000991.
57. Vollbrecht P. J., Nesbitt K. M., Addis V. M. et al. Differential regulation of nucleus accumbens glutamate and GABA in obesity-prone and obesity-resistant rats. J Neurochem. 2023 Feb;164(4):499-511. doi: 10.1111/jnc.15720.
58. Yohn S. E., Galbraith J., Calipari E. S., Conn P. J. Shared Behavioral and Neurocircuitry Disruptions in Drug Addiction, Obesity, and Binge Eating Disorder: Focus on Group I mGluRs in the Mesolimbic Dopamine Pathway. ACS Chem Neurosci. 2019 May 15;10(5):2125-2143. doi: 10.1021/acschemneuro.8b00601.
59. Santos R. P.M., Ribeiro R., Ferreira-Vieira T.H. et al. Metabotropic glutamate receptor 5 knockout rescues obesity phenotype in a mouse model of Huntington’s disease. Sci Rep. 2022 Apr 4;12(1):5621. doi: 10.1038/s41598-022-08924-4.
60. Morimoto Y., Zhang Q., Adachi K. Effects of memantine, an N-methyl-D-aspartate receptor antagonist, on fatigue and neuronal brain damage in a rat model of combined (physical and mental) fatigue. Biol Pharm Bull. 2012;35(4):481-6. doi: 10.1248/bpb.35.481.
61. Stratford T. R., Holahan M. R., Kelley A. E. Injections of nociceptin into nucleus accumbens shell or ventromedial hypothalamic nucleus increase food intake. Neuroreport. 1997 Jan 20;8(2):423-6. doi: 10.1097/00001756-199701200-00009.
62. Zendehdel M., Mokhtarpouriani K., Babapour V., Baghbanzadeh A., Pourrahimi M., Hassanpour S. The effect of serotonergic system on nociceptin/orphanin FQ induced food intake in chicken. J Physiol Sci. 2013 Jul;63(4):271-7. doi: 10.1007/s12576-013-0263-x.
63. Witkin J. M., Statnick M. A., Rorick-Kehn L.M., Pintar J. E., Ansonoff M., Chen Y., Tucker R. C., Ciccocioppo R. The biology of Nociceptin/Orphanin FQ (N/OFQ) related to obesity, stress, anxiety, mood, and drug dependence. Pharmacol Ther. 2014 Mar;141(3):283-99. doi: 10.1016/j.pharmthera.2013.10.011.
64. Daneshvar M., Zendehdel M., Vazir B., Asghari A. Correlation of Histamine Receptors and Adrenergic Receptor in Broilers Appetite. Arch Razi Inst. 2022 Feb 28;77(1):141-149. doi: 10.22092/ARI.2021.354450.1638.
65. Díaz N. F., Flores-Herrera H., García-López G., Molina-Hernández A. Central Histamine, the H(3)-Receptor and Obesity Therapy. CNS Neurol Disord Drug Targets. 2019;18(7):516-522. doi: 10.2174/1871527318666190703094846.
66. Mika K., Szafarz M., Zadrożna M. et al. KSK-74: Dual Histamine H(3) and Sigma-2 Receptor Ligand with Anti-Obesity Potential.Int J Mol Sci. 2022 Jun 24;23(13):7011. doi: 10.3390/ijms23137011.
67. Gnad T., Navarro G., Lahesmaa M. et al. Adenosine/A2B Receptor Signaling Ameliorates the Effects of Aging and Counteracts Obesity. Cell Metab. 2022 Apr 5;34(4):649. doi: 10.1016/j.cmet.2022.02.014.
68. Dhalla A. K., Chisholm J. W., Reaven G. M., Belardinelli L. A1 adenosine receptor: role in diabetes and obesity. Handb Exp Pharmacol. 2009;(193):271-95. doi: 10.1007/978-3-540-89615-9_9.
69. Micioni Di Bonaventura M. V., Cifani C., Lambertucci C., Volpini R., Cristalli G., Massi M. A2A adenosine receptor agonists reduce both high-palatability and low-palatability food intake in female rats. Behav Pharmacol. 2012 Sep;23(5-6):567-74. doi: 10.1097/FBP.0b013e3283566a60.
70. Kim K., Im H., Son Y., Kim M., Tripathi S. K., Jeong L. S., Lee Y. H. Anti-obesity effects of the dual-active adenosine A(2A)/A(3) receptor-ligand LJ-4378.Int J Obes (Lond). 2022 Dec;46(12):2128-2136. doi: 10.1038/s41366-022-01224-x.
71. Rivas D. A., Rice N. P., Ezzyat Y., McDonald D.J., Cooper B. E., Fielding R. A. Sphingosine-1-phosphate analog FTY720 reverses obesity but not age-induced anabolic resistance to muscle contraction. Am J Physiol Cell Physiol. 2019 Sep 1;317(3): C502-C512. doi: 10.1152/ajpcell.00455.2018.
Рецензия
Для цитирования:
Торшин И.Ю., Громова О.А., Лазебник Л.Б. Методы машинного обучения и анализа больших данных для установления молекулярных механизмов воздействия рацетамов на метаболизм жировой ткани. Экспериментальная и клиническая гастроэнтерология. 2024;(5):12-25. https://doi.org/10.31146/1682-8658-ecg-225-5-12-25
For citation:
Torshin I.Yu., Gromova O.A., Lazebnik L.B. Methods of machine learning and big data analysis to establish the molecular mechanisms of the effects of racetams on the metabolism of adipose tissue. Experimental and Clinical Gastroenterology. 2024;(5):12-25. (In Russ.) https://doi.org/10.31146/1682-8658-ecg-225-5-12-25