Preview

Experimental and Clinical Gastroenterology

Advanced search

The efficacy of the Maxiflor Maximum synbiotic for the correction of gastrointestinal dysfunction in patients after COVID-19

https://doi.org/10.31146/1682-8658-ecg-220-12-103-110

Abstract

The aim of the study: to evaluate the effect of the Maxiflor Maximum dietary supplement on the severity of dyspepsia and colon microbiota in patients who had a new coronavirus infection and were treated with antibacterial drugs. Materials and methods. The study included 60 patients with gastrointestinal symptoms who had a novel coronavirus infection and received antibacterial drugs for at least 7 days to treat complications of COVID-19. Of these, 30 people made up the “Treatment” group and received the biologically active supplement “Maxiflor Maximum” at a dose of 1 capsule per day for 4 weeks. 30 people were observed prospectively in the Control group. Analysis of subjective status was carried out using the Russified Gastrointestinal Symptom Rating Scale (GSRS) questionnaire. All patients underwent fecal analysis for dysbacteriosis. The questionnaire and microbiological test were performed on the first day of the study, and again after 10 and 30 days. Discussion. The severity of gastroenterological symptoms after 4 weeks of “Maxiflor Maximum” therapy was statistically significantly lower than in the control group. There was a significant subjective improvement in well-being - a decrease in the frequency of abdominal pain, the intensity of dyspepsia, the frequency of stools normalized (p<0.05). A positive dynamics of intestinal microbiota indicators was registered in the “Treatment” group. The number of opportunistic representatives of the microflora decreased statistically and the pool of beneficial saprophytes increased (p<0.05). In the “Control” group, there was a lack of statistically significant changes in the state of the intestinal microbiota. Conclusion. The dynamics of clinical and laboratory parameters reflecting the course of COVID-19 indicates the effectiveness of using the Maxiflor Maximum synbiotic as an adjuvant therapy, and makes it possible to recommend it for use in the complex treatment of patients with a new coronavirus infection.

About the Authors

T. M. Bogdanova
Saratov State Medical University named after V. I. Razumovsky (Razumovsky University)
Russian Federation


T. Yu. Kalyuta
Saratov State Medical University named after V. I. Razumovsky (Razumovsky University)
Russian Federation


V. A. Semenova
Saratov State Medical University named after V. I. Razumovsky (Razumovsky University)
Russian Federation


A. S. Fedonnikov
Saratov State Medical University named after V. I. Razumovsky (Razumovsky University)
Russian Federation


A. P. Bykova
Saratov State Medical University named after V. I. Razumovsky (Razumovsky University)
Russian Federation


References

1. Wang Y. R., Richter J. E., Dempsey D. T. Trends and Outcomes of Hospitalizations for Peptic Ulcer Disease in the United States, 1993 to 2006. Ann Surg. 2010 Jan;251(1):51-8. doi: 10.1097/SLA.0b013e3181b975b8.

2. Tang N., Li D., Wang X., Sun Z. Abnormal coagulation parameters are associated with poor prognosis in patients with novel coronavirus pneumonia. J Thromb Haemost. 2020 Apr;18(4):844-847. doi: 10.1111/jth.14768.

3. Liu C., Jiang Z. C., Shao C. X. et al. [Preliminary study of the relationship between novel coronavirus pneumonia and liver function damage: a multicenter study]. Zhonghua Gan Zang Bing Za Zhi. 2020 Feb 20;28(2):148-152. doi: 10.3760/cma.j.issn.1007-3418.2020.02.003.

4. Gromova O. A., Torshin I. Yu. The importance of zinc in maintaining the activity of antiviral innate immunity proteins: analysis of publications on COVID-19. The Russian Journal of Preventive Medicine. 2020;23(3):125-133. (In Russ.) doi 10.17116/profmed202023031131.@@ Громова О. А. Торшин И. Ю. Важность цинка для поддержания активности белков врожденного противовирусного иммунитета: анализ публикаций, посвященных COVID-19. Профилактическая медицина. 2020;23(3):125-133. doi 10.17116/profmed202023031131.

5. Stefanyuk O. V., Lazebnik L. B. The defeat of the digestive system during infection SARS-CoV-2. Experimental and Clinical Gastroenterology. 2020;175(3): 4-9. (In Russ.) doi: 10.31146/1682-8658-ecg-175-3-4-9.@@ Стефанюк О. В., Лазебник Л. Б. Поражения органов пищеварения при инфицировании SARS-CoV-2. Экспериментальная и клиническая гастроэнтерология. 2020;175(3): 4-9. doi: 10.31146/1682-8658-ecg-175-3-4-9.

6. Temporary guidelines [Prevention, diagnosis and treatment of novel coronavirus infection (COVID-19)]. Ministry of Health of the Russian Federation. Version 17 (14.12.2022); 260 p (in Russ.)@@ Временные методические рекомендации «Профилактика, диагностика и лечение новой коронавирусной инфекции (COVID-19)». Министерство здравоохранения Российской Федерации. Версия 17 (14.12.2022); 260с.

7. Xiao F., Tang M., Zheng X. et al. Evidence for Gastrointestinal Infection of SARS-CoV-2. Gastroenterology. 2020;158(6):1831-1833. doi: 10.1053/j.gastro.2020.02.055.

8. Gao Q. Y., Chen Y. X., Fang J. Y. 2019 Novel coronavirus infection and gastrointestinal tract. J Dig Dis. 2020 Mar;21(3):125-126. doi: 10.1111/1751-2980.12851.

9. Zuo T., Zhang F., Lui G. C.Y. et al. Alterations in Gut Microbiota оf Patients With COVID-19 During Time of Hospitalization. Gastroenterology. 2020 Sep;159(3):944-955.e8. doi: 10.1053/j.gastro.2020.05.048.

10. D’Amico F., Baumgart D. C., Danese S., Peyrin-Biroulet L. Diarrhea During COVID-19 Infection: Pathogenesis, Epidemiology, Prevention, and Management. Clin Gastroenterol Hepatol. 2020 Jul;18(8):1663-1672. doi: 10.1016/j.cgh.2020.04.001.

11. Villapol S. Gastrointestinal symptoms associated with COVID-19: impact on the gut microbiome. Transl Res. 2020 Dec;226:57-69. doi: 10.1016/j.trsl.2020.08.004.

12. Megyeri K., Dernovics Á., Al-Luhaibi Z.I.I., Rosztóczy A. COVID-19-associated diarrhea. World J Gastroenterol. 2021 Jun; 27(23): 3208-3222. doi: 10.3748/wjg.v27.i23.3208.

13. Lin L., Jiang X., Zhang Z. et al. Gastrointestinal symptoms of 95 cases with SARS-CoV-2 infection. Gut. 2020 Jun; 69(6): 997-1001. doi: 10.1136/gutjnl-2020-321013.

14. Zeppa S. D., Agostini D., Piccoli G., et al. Gut Microbiota Status in COVID-19: An Unrecognized Player? Front Cell Infect Microbiol. 2020 Nov;10:576551. doi: 10.3389/fcimb.2020.576551.

15. Tian C. F., Su B. Y., Li Y. J. et al. Management of antibiotic-associated pseudomembranous colitis in Non-hospitalized and hospitalized patients. Pak J Pharm Sci. 2016 Sep;29 (5 Suppl):1805-1810.

16. Issa I, Moucari R. Probiotics for antibiotic-associated diarrhea: do we have a verdict? World J Gastroenterol. 2014 Dec; 20(47): 17788-17795. doi: 10.3748/wjg.v20.i47.17788.

17. D’Souza A.L., Rajkumar C., Cooke J., Bulpitt C. J. Probiotics in prevention of antibiotic associated diarrhoea: meta-analysis. BMJ. 2002 Jun;324(7350):1361. doi: 10.1136/bmj.324.7350.1361.

18. McFarland L. V. Antibiotic-associated diarrhea: epidemiology, trends and treatment. Future Microbiol. 2008 Oct;3(5):563-78. doi: 10.2217/17460913.3.5.563.

19. Zhang Y., Sun J., Zhang J. et al. Enzyme Inhibitor Antibiotics and Antibiotic-Associated Diarrhea in Critically Ill Patients. Med Sci Monit. 2018 Dec;24:8781-8788. doi: 10.12659/MSM.913739.

20. Puri B. K., Hak karainen-Smith J.S., Monro J. A. The potential use of cholestyramine to reduce the risk of developing Clostridium difficile-associated diarrhoea in patients receiving long-term intravenous ceftriaxone. Med Hypotheses. 2015 Jan;84(1):78-80. doi: 10.1016/j.mehy.2014.11.020.

21. Ruiter-Ligeti J., Vincent S., Czuzoj-Shulman N., Abenhaim H. A. Risk Factors, Incidence, and Morbidity Associated With Obstetric Clostridium difficile Infection. Obstet Gynecol. 2018 Feb;131(2):387-391. doi: 10.1097/AOG.0000000000002422.

22. Videlock E. J., Cremonini F. Meta-analysis: probiotics in antibiotic-associated diarrhoea. Aliment Pharmacol Ther. 2012 Jun;35(12):1355-69. doi: 10.1111/j.1365-2036.2012.05104.x.

23. Ma H., Zhang L., Zhang Y. et al.Combined administration of antibiotics increases the incidence of antibiotic-associated diarrhea in critically ill patients. Infect Drug Resist. 2019; 12: 1047-1054. doi: 10.2147/IDR.S194715.

24. Howell M. D., Novack V., Grgurich P. et al. Iatrogenic gastric acid suppression and the risk of nosocomial Clostridium difficile infection. Arch Intern Med. 2010 May;170(9):784-90. doi: 10.1001/archinternmed.2010.89.

25. Conte L., Maurizio Toraldo D. Targeting the gut-lung microbiota axis using a high-fibre diet and probiotics may have anti-inflammatory effects in COVID-19 infection. Ther Adv Respir Dis. 2020 Jan-Dec;14:1753466620937170. doi: 10.1177/1753466620937170.

26. Bradley K. C., Finsterbusch K., Schnepf D. et al. Microbiota-Driven Tonic Interferon Signals in Lung Stromal Cells Protect from Influenza Virus Infection. Cell Rep. 2019 Jul;28(1):245-256.e4. doi: 10.1016/j.celrep.2019.05.105.

27. Benedetta B., Vincenzo C., Erasmo N. Probiotics and Covid-19.Int J Food Sci Nutr. 2021 May;72(3):293-299. doi: 10.1080/09637486.2020.1807475.

28. Shklyaev A. E., Gorbunov Y. V. The use of specific and non-specific questionnaires to assess quality of life in patients with functional disorders of intestine. The Russian Archives of Internal Medicine. 2016;6(4):53-57. (In Russ.) doi: 10.20514/2226-6704-2016-6-4-53-57.@@ Шкляев А. Е., Горбунов Ю. В. Применение специфического и неспецифического опросников для оценки качества жизни пациентов с функциональной патологией кишечника. Архивъ внутренней медицины. 2016;6(4):53-57. doi: 10.20514/2226-6704-2016-6-4-53-57.


Review

For citations:


Bogdanova T.M., Kalyuta T.Yu., Semenova V.A., Fedonnikov A.S., Bykova A.P. The efficacy of the Maxiflor Maximum synbiotic for the correction of gastrointestinal dysfunction in patients after COVID-19. Experimental and Clinical Gastroenterology. 2023;(12):103-110. (In Russ.) https://doi.org/10.31146/1682-8658-ecg-220-12-103-110

Views: 211


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1682-8658 (Print)