Уровень экспрессии длинных некодирующих РНК MALAT1, GAS5, DANCR и TUG1 в лейкоцитах периферической крови пациентов с неалкогольной жировой болезнью печени
https://doi.org/10.31146/1682-8658-ecg-218-10-160-167
Аннотация
Ключевые слова
Об авторах
И. В. КурбатоваРоссия
А. В. Васильева
Россия
Л. В. Топчиева
Россия
О. П. Дуданова
Россия
А. А. Шиповская
Россия
Список литературы
1. Lazebnik L. B., Golovanova E. V., Turkina S. V. et al. Non-alcoholic fatty liver disease in adults: clinic, diagnostics, treatment. Guidelines for therapists, third version. Experimental and Clinical Gastroenterology. 2021;1(1):4-52. (In Russ.) doi: 10.31146/1682-8658-ecg-185-1-4-52.@@ Лазебник Л. Б., Голованова Е. В., Туркина С. В. и др. Неалкогольная жировая болезнь печени у взрослых: клиника, диагностика, лечение. Рекомендации для терапевтов, третья версия. Экспериментальная и клиническая гастроэнтерология. 2021; 185(1): 4-52. doi: 10.31146/1682-8658-ecg-185-1-4-52.
2. Ye L., Zhao D., Xu Y. et.al. LncRNA-Gm9795 promotes inflammation in non-alcoholic steatohepatitis via NF-κB/JNK pathway by endoplasmic reticulum stress. J. Transl. Med. 2021; 19:101. doi: 10.1186/s12967-021-02769-7.
3. Leti F., Legendre C., Still C. D. et al. Altered expression of MALAT1 lncRNA in nonalcoholic steatohepatitis fibrosis regulates CXCL5 in hepatic stellate cells. Translational Research. 2017; 190: 25-39. doi: 10.1016/j.trsl.2017.09.001.
4. Bu F., Wang A., Zhu Y. et al. LncRNA NEAT1: shedding light on mechanisms and opportunites in liver diseases. Liver Int. 2020; 40(11): 2612-2626. doi: 10.1111/liv.14629.
5. He Z., Yang D., Fan X. et al. The Roles and Mechanisms of lncRNAs in Liver Fibrosis.Int. J. Mol. Sci. 2020; 21(4): 1482. doi:10.3390/ijms21041482.
6. Rohilla S., Kaur S., Puria R. Long non-coding RNA in Non-alcoholic fatty liver disease. Adv Clin Chem. 2022;110:1-35. doi: 10.1016/bs.acc.2022.06.001.
7. Zeng Q., Liu C. H., Wu D. et al. LncRNA and circRNA in Patients with Non-Alcoholic Fatty Liver Disease: A Systematic Review. Biomolecules 2023; 13, 560. doi:10.3390/biom13030560.
8. Yu F., Zheng J., Mao Y. et al. Long Non-coding RNA Growth Arrest-specific Transcript 5 (GAS5) Inhibits Liver Fibrogenesis through a Mechanism of Competing Endogenous RNA. J Biol Chem. 2015; 290(47): 28286-28298. doi: 10.1074/jbc.M115.683813.
9. Han M.-H., Lee J. H., Kim G. et al. Expression of the Long Noncoding RNA GAS5 Correlates with Liver Fibrosis in Patients with Nonalcoholic Fatty Liver Disease. Genes. 2020; 11, 545. doi: 10.3390/genes11050545.
10. Mukherjee A. G., Wanjari U. R., Gopalakrishnan A. V. et al. Exploring the Regulatory Role of ncRNA in NAFLD: A Particular Focus on PPARs. Cells. 2022; 11, 3959. doi: 10.3390/cells11243959.
11. Tripathi V., Ellis J. D., Shen Z. et al. The nuclear-retained noncoding RNA MALAT1 regulates alternative splicing by modulating SR splicing factor phosphorylation. Mol Cell. 2010; 39(6): 925-38. doi: 10.1016/j.molcel.2010.08.011.
12. Lu J., Guo J., Liu J. et al. Long non-coding RNA MALAT1: A key player in liver diseases. Frontiers in Medicine. 2022; 734643. doi: 10.3389/fmed.2021.734643.
13. Cui J., Wang Y., Xue H. Long non-coding RNA GAS5 contributes to the progression of nonalcoholic fatty liver disease by targeting the microRNA-29a-3p/NOTCH2 axis. Bioengineered. 2022; 13(4): 8370-8381. doi: 10.1080/21655979.2022.2026858.
14. Chen, T., Meng, Y., Zhou, Z. et al. GAS5 protects against nonalcoholic fatty liver disease via miR-28a-5p/MARCH7/NLRP3 axis-mediated pyroptosis. Cell Death Differ. 2023; 30: 1829-1848. doi: 10.1038/s41418-023-01183-4.
15. Lin Y. H., Wu M. H., Huang Y. H. et al. Taurine up-regulated gene 1 functions as a master regulator to coordinate glycolysis and metastasis in hepatocellular carcinoma. Hepatology. 2018; 67(1): 188-203. doi: 10.1002/hep.29462.
16. Guo D., Li Y., Chen Y. et al. DANCR promotes HCC progression and regulates EMT by sponging miR-27a-3p via ROCK1/LIMK1/COFILIN1 pathway. Cell Prolif. 2019; 52(4): e12628. doi: 10.1111/cpr.12628.
17. Pinto J. P., Dias V., Zoller H. et.al. Hepcidin messenger RNA expression in human lymphocytes. Immunology. 2010; 130(2): 217-230. doi: 10.1111/j.1365-2567.2009.03226.x.
18. Wang W. Y., Wang Y. F., Ma P. et al. Taurine-upregulated gene 1: a vital long non-coding RNA associated with cancer in humans (review). Mol Med Rep. 2017; 16(5): 6467-6471. doi: 10.3892/mmr.2017.7472.
19. Han X., Hong Y., Zhang K. Tug1 is involved in liver fibrosis and activation of hscs by regulating mir-29b. Biochem. Biophys. Res.Commun. 2018; 503: 1394-1400. doi: 10.1016/j.bbrc.2018.07.054.
20. Qin C. F., Zhao F. L. Long non-coding RNA TUG1 can promote proliferation and migration of pancreatic cancer via EMT pathway. Eur Rev Med Pharmacol Sci. 2017; 21(10): 2377-2384. PMID: 28617552.
21. Sun J., Ding C., Yang Z., et al. The long non-coding RNA TUG1 indicates a poor prognosis for colorectal cancer and promotes metastasis by affecting epithelial-mesenchymal transition. J Transl Med. 2016; 14:42. doi: 10.1186/s12967-016-0786-z.
22. Hu M., Wang Y., Meng Y. et al. Hypoxia induced-disruption of lncRNA TUG1/PRC2 interaction impairs human trophoblast invasion through epigenetically activating Nodal/ALK7 signalling. J Cell Mol Med. 2022; 26: 4087-4100. doi: 10.1111/jcmm.17450.
23. Xiang J., Deng Y. Y., Liu H. X. et al. LncRNA MALAT1 promotes PPARα/CD36-mediated hepatic lipogenesis in nonalcoholic fatty liver disease by modulating miR-206/ARNT axis. Frontiers in Bioengineering and Biotechnology. 2022; 10: 858558. doi: 10.3389/fbioe.2022.858558.
24. Zeng Q., Liu C. H., Wu D. et al. LncRNA and circRNA in Patients with Non-Alcoholic Fatty Liver Disease: A Systematic Review. Biomolecules. 2023; 13(3): 560. doi: 10.3390/biom13030560.
25. Liao X., Chen J., Luo D. et al. Prognostic value of long non-coding RNA MALAT1 in hepatocellular carcinoma: A study based on multi-omics analysis and RT-PCR validation. Pathology and Oncology Research. 2023; 28: 1610808. doi: 10.3389/pore.2022.1610808.
26. Su S. B., Tao L., Liang X. L. et.al. Long noncoding RNA GAS5 inhibits LX-2 cells activation by suppressing NF-κB signalling through regulation of the miR-433-3p/TLR10 axis. Dig Liver Dis. 2022; 54(8): 1066-1075. doi: 10.1016/j.dld.2021.11.002.
27. Yuan S., Wang J., Yang F. et.al. Long noncoding RNA DANCR increases stemness features of hepatocellular carcinoma by derepression of CTNNB1. Hepatology. 2016; 63(2):499-511. doi: 10.1002/hep.27893.
28. Ghafouri-Fard S., Khoshbakht T., Hussen B. M. et.al. A review on the role of DANCR in the carcinogenesis. Cancer Cell Int. 2022; 22(1): 194. doi: 10.1186/s12935-022-02612-z.
29. Yang L., Jiang M. N., Liu Y. et.al. Crosstalk between lncRNA DANCR and miR-125b-5p in HCC cell progression. Tumori J. 2021;107(6): 504-513. doi: 10.1177/0300891620977010.
Рецензия
Для цитирования:
Курбатова И.В., Васильева А.В., Топчиева Л.В., Дуданова О.П., Шиповская А.А. Уровень экспрессии длинных некодирующих РНК MALAT1, GAS5, DANCR и TUG1 в лейкоцитах периферической крови пациентов с неалкогольной жировой болезнью печени. Экспериментальная и клиническая гастроэнтерология. 2023;(10):160-167. https://doi.org/10.31146/1682-8658-ecg-218-10-160-167
For citation:
Kurbatova I.V., Vasileva A.V., Topchieva L.V., Dudanova O.P., Shopovskaya A.A. Expression level of long non-coding RNA MALAT1, GAS5, DANCR and TUG1 in peripheral blood leukocytes of patients with non-alcoholic fatty liver disease. Experimental and Clinical Gastroenterology. 2023;(10):160-167. (In Russ.) https://doi.org/10.31146/1682-8658-ecg-218-10-160-167