Preview

Experimental and Clinical Gastroenterology

Advanced search

Influence of antibiotic-associated disorders of gut microbiota on cognitive function. Experimental study

https://doi.org/10.31146/1682-8658-ecg-215-7-94-101

Abstract

Objective. To study the influence of antibiotic-associated disorders of gut microbiota on cognitive functions using an experimental biological model. Materials and methods. An experimental study was carried out using a biological model (Wistar rats, 80 animals, males of the same age). During the experiment, dysbiosis caused by the antibacterial drugs amoxicillin (Chemopharm, Serbia) and metronidazole (OOO "Ozon", Russia), injected into animals per os in subtherapeutic (1:100 of therapeutic doses) and therapeutic doses were simulated. The course of antibacterial therapy was 3 days. Microbiological examination of the biomaterial was carried out using traditional microbiological methods before and after the injection of antibacterial drugs. To assess the intensity of dysbiotic changes we used Colonization Resistance Index by Ploskireva A. A. (CRI). Neurobehavioral reactions were assessed using automated cameras (Columbus Instruments, USA) with activity analyzers (Opto-Varimex-5 Auto-Track, USA) of motor and research components, followed by automated software post-processing. Cognitive functions of the animals were examined before injection of antibacterial drugs and after the finished course. Statistical analysis of the data was performed using standard methods of descriptive statistics using "Microsoft Office Excel 2010" program. Statistical significance of the differences in the compared indices was assessed using Student's t-test at a significance level of p < 0.05 (t> 2). Results. Injection of antibiotics in animals decreased CRI at both subtherapeutic and therapeutic doses of drugs, indicating the development of microbiota disorders. When subtherapeutic doses of antibiotics were injected there was a decrease in the CRI from 0,48 (value before drug administration) to -1,86 (p<0,01) on the 3rd day after administration of the drug, which was associated with a decrease in the rodents' tentative-exploration activity from 34 (baseline value) to 11 (p<0,01). In the group of animals that received therapeutic doses of antibiotics, the CRI decreased from 0.37 to -2.34 (p<0.01) on the 3rd day of the experiment, which was also associated with a 2-fold decrease in the level of orientational research activity of rodents as compared with the background values, from 34 to 15 (p<0.01). Similar patterns were obtained about the relationship between the CRI and the motor activity of the animals on the parameter of the distance traveled. The action of subtherapeutic doses of antibiotics contributed to a decrease in the CRI, against which there was a 3-fold decrease in motor activity on the parameter of the distance traveled, from 1352 to 457 (p<0,01) on the 4th day of the experiment. Injection of therapeutic doses of antibiotics was associated with a decrease in motor activity on the parameter of the pathway from 930 to 563 (p<0.01) in the period immediately after antibiotic therapy. The changes in short-term memory in the rats were not detected. Conclusion. The effect of antibiotic-associated disorders of gut microbiota on cognitive functions of experimental animals was demonstrated objectively on the example of an experimental biological model. The severity of cognitive function decrease was in correlation with the degree of antibiotic-associated disorders of microbiota and depended on the dose of antibacterial drugs.

About the Authors

A. Yu. Popova
Russian Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing
Russian Federation


A. A. Ploskireva
Central Research Institute of Epidemiology of Rospotrebnadzor
Russian Federation


N. G. Kulikova
Central Research Institute of Epidemiology of Rospotrebnadzor
Russian Federation


L. A. Bityumina
Central Research Institute of Epidemiology of Rospotrebnadzor
Russian Federation


A. F. Chemedenko
Central Research Institute of Epidemiology of Rospotrebnadzor
Russian Federation


V. V. Safandeev
“Federal Scientific Center of Hygiene named after. F. F. Erisman” Federal Service for Supervision in the field of consumer rights protection and human well-being
Russian Federation


M. A. Poroshin
“Federal Scientific Center of Hygiene named after. F. F. Erisman” Federal Service for Supervision in the field of consumer rights protection and human well-being
Russian Federation


N. D. Evdokimov
“Federal Scientific Center of Hygiene named after. F. F. Erisman” Federal Service for Supervision in the field of consumer rights protection and human well-being
Russian Federation


M. V. Vostrikova
“Federal Scientific Center of Hygiene named after. F. F. Erisman” Federal Service for Supervision in the field of consumer rights protection and human well-being
Russian Federation


A. I. Vinogradova
“Federal Scientific Center of Hygiene named after. F. F. Erisman” Federal Service for Supervision in the field of consumer rights protection and human well-being
Russian Federation


R. I. Latipova
“Federal Scientific Center of Hygiene named after. F. F. Erisman” Federal Service for Supervision in the field of consumer rights protection and human well-being
Russian Federation


M. V. Bidevkina
“Federal Scientific Center of Hygiene named after. F. F. Erisman” Federal Service for Supervision in the field of consumer rights protection and human well-being
Russian Federation


A. V. Bogdanova
“Federal Scientific Center of Hygiene named after. F. F. Erisman” Federal Service for Supervision in the field of consumer rights protection and human well-being
Russian Federation


T. A. Sinitskaya
“Federal Scientific Center of Hygiene named after. F. F. Erisman” Federal Service for Supervision in the field of consumer rights protection and human well-being
Russian Federation


S. V. Kuzmin
“Federal Scientific Center of Hygiene named after. F. F. Erisman” Federal Service for Supervision in the field of consumer rights protection and human well-being
Russian Federation


A. V. Gorelov
Central Research Institute of Epidemiology of Rospotrebnadzor
Russian Federation


References

1. Thursby E., Juge N.Introduction to the human gut microbiota. Biochem J. 2017 May 16; 474(11):1823-1836. doi: 10.1042/BCJ20160510.

2. Sitkin S.I., Tkachenko E. I., Vakhitov T. Ya. Phylometabolic core of intestinal microbiota. Almanac of Clinical Medicine. 2015 August-September; 40: 12-34 (In Russ.)@@ Ситкин С. И., Ткаченко Е. И., Вахитов Т. Я. Филометаболическое ядро микробиоты кишечника. Альманах клинической медицины. 2015 Август-сентябрь; 40: 12-34.

3. Kaybysheva V. O., Zharova M. E., Filimendikova K. Yu., Nikonov E. L. Human Microbiome: age-related changes and functions.Russian Journal of Evidence-based Gastroenterology = Dokazatel’naya gastroenterologiya. 2020;9(2):42-55. (In Russ.) doi: 10.17116/dokgastro2020902142.@@ Кайбышева В. О., Жарова М. Е., Филимендикова К. Ю., Никонов Е. Л. Микробиом человека: возрастные изменения и функции. Доказательная гастроэнтерология. 2020;9(2):42-55. (in Russ.) doi: 10.17116/dokgastro2020902142.

4. Petersen, C.; Round, J. L. Defining dysbiosis and its influence on host immunity and disease. Cell. Microbiol. 2014;(16):1024-1033. (in Russ.)@@ Петерсен, К.; Раунд, Дж. Л. Определение дисбиоза и его влияние на иммунитет и болезнь хозяина. Клетка. микробиол. 2014;(16):1024-1033

5. Milani C., Duranti S., Bottacini F. et al. The First Microbial Colonizers of the Human Gut: Composition, Activities, and Health Implications of the Infant Gut Microbiota. Microbiol Mol Biol Rev. 2017 Nov 8;81(4): e00036-17. doi: 10.1128/MMBR.00036-17.

6. Rogers G., Keating D., Young R. et al. From gut dysbiosis to altered brain function and mental illness: mechanisms and pathways. Mol Psychiatry. 2016 Jun;21(6):738-48. doi: 10.1038/mp.2016.50.

7. Bezawada N, Phang TH, Hold GL, Hansen R. Autism Spectrum Disorder and the Gut Microbiota in Children: A Systematic Review. Ann Nutr Metab. 2020;76(1):16-29. doi: 10.1159/000505363.

8. Murros K. E. Hydrogen Sulfide Produced by Gut Bacteria May Induce Parkinson’s Disease. Cells. 2022 Mar 12; 11(6):978. doi: 10.3390/cells11060978.

9. Certificate of state registration of a computer program No. 2023610431 Russian Federation. Program for registration and analysis of behavioral reactions of laboratory animals in sanitary-toxicological studies with subsequent graphical presentation: No. 2022682345: application. 11/21/2022: publ. 01/11/2023 / S. V. Kuzmin, T. A. Sinitskaya, V. V. Safandeev et al.; applicant Federal Budgetary Institution of Science “Federal Scientific Center of Hygiene named after. F. F. Erisman” Federal Service for Supervision of Consumer Rights Protection and Human Welfare. (in Russ.) EDN: NTCITZ.@@ Свидетельство о государственной регистрации программы для ЭВМ № 2023610431 Российская Федерация. Программа регистрации и анализа поведенческих реакций лабораторных животных в санитарно-токсикологических исследованиях с последующим графическим представлением: № 2022682345: заявл. 21.11.2022: опубл. 11.01.2023 / С. В. Кузьмин, Т. А. Синицкая, В. В. Сафандеев [и др.]; заявитель Федеральное бюджетное учреждение науки «Федеральный научный центр гигиены им. Ф. Ф. Эрисмана» Федеральной службы по надзору в сфере защиты прав потребителей и благополучия человека. EDN NTCITZ.

10. Poroshin M. A., Beloyedova N. S., Sazhin F. S., Safandeev V. V. [Modern approaches to behavioral experiments in toxicology]. Abstracts of the Ninth Conference of Laboratory Animal Specialists Rus-LASA. (in Russ.) doi: 10.29296/2618723X-RusLASA2021-07.@@ Порошин М. A., Белоедова Н. С., Сажин Ф. С., Сафандеев В. В. Современные подходы к поведенческим экспериментам в токсикологии. Тезисы Девятой конференции специалистов по лабораторным животным Rus-LASA. doi: 10.29296/2618723X-RusLASA2021-07.

11. Bratch A., Kann Sp., Cain Joshua A. et al. Working Memory Systems in the Rat. Current Biology. 2016;26(3):351-355. (in Russ.) doi: 10.1016/j.cub.2015.11.068.

12. Gorelov A. V., Ploskireva A. A. Method for assessing the state of colonization resistance of microbiocenosis of a human biotope (options).Russian Federation Patent for an invention RUS 2381504, 2008. (in Russ.)@@ Горелов А. В., Плоскирева А. А. Способ оценки состояния колонизационной резистентности микробиоценоза биотопа организма человека (варианты) // Патент РФ на изобретение RUS 2381504, 2008.

13. Shoubridge A.P., Choo J. M., Martin A. M. et al. The gut microbiome and mental health: advances in research and emerging priorities. Mol Psychiatry. 2022;(27): 1908-1919. doi: 10.1038/s41380-022-01479-w.

14. Putri S.S.F., Irfannuddin I., Murti K. et al. The role of gut microbiota on cognitive development in rodents: a meta-analysis. J Physiol Sci. 2023; 73: 10. doi: 10.1186/s12576-023-00869-1.

15. Richarte V, Sánchez-Mora C, Corrales M, Fadeuilhe C, Vilar-Ribó L, Arribas L, Garcia E, Rosales-Ortiz SK, Arias-Vasquez A, Soler-Artigas M, Ribasés M, Ramos-Quiroga JA. Gut microbiota signature in treatment-naïve attention-deficit/hyperactivity disorder. Transl Psychiatry. 2021 Jul 8;11(1):382. doi: 10.1038/s41398-021-01504-6.

16. Sampson T.R., Debelius J. W., Thron T. et al. Gut Microbiota Regulate Motor Deficits and Neuroinflammation in a Model of Parkinson’s Disease. Cell. 2016 Dec 1;167(6):1469-1480.e12. doi: 10.1016/j.cell.2016.11.018.


Review

For citations:


Popova A.Yu., Ploskireva A.A., Kulikova N.G., Bityumina L.A., Chemedenko A.F., Safandeev V.V., Poroshin M.A., Evdokimov N.D., Vostrikova M.V., Vinogradova A.I., Latipova R.I., Bidevkina M.V., Bogdanova A.V., Sinitskaya T.A., Kuzmin S.V., Gorelov A.V. Influence of antibiotic-associated disorders of gut microbiota on cognitive function. Experimental study. Experimental and Clinical Gastroenterology. 2023;(7):94-101. (In Russ.) https://doi.org/10.31146/1682-8658-ecg-215-7-94-101

Views: 113


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1682-8658 (Print)