Preview

Experimental and Clinical Gastroenterology

Advanced search

Cardiovascular diseases: pathophysiological role of gut microbiota and new targets for treatment and prevention

https://doi.org/10.31146/1682-8658-ecg-217-9-201-208

Abstract

Despite certain success achieved in therapy and prevention, cardiovascular diseases (CVD) continue to be the leading cause of death of the population worldwide. One of the main reasons for this is that the pathophysiological mechanisms of the development of atherosclerosis, a disease that underlies most clinical forms of CVD, have not been fully understood yet, and therapy based on well-known concepts of pathogenesis, including lipid, does not provide the desired results. In this regard, search and identification of new molecular targets and therapeutic approaches is an important objective of modern medical science. In this direction, a completely new metabolic pathway identified by researchers, that links lipid consumption, gut microbiota (GM) and development of atherosclerosis, deserves interest. Thus, for the first time it was shown that GM uses food choline, as well as carnitine (found in red meat) for synthesis of trimethylamine (TMA), which, in turn, is rapidly oxidized by liver flavin monooxidases (FMO) to trimethylamine oxide (TMAO), that causes the development of atherosclerosis. Mechanisms of proatherogenic effect of TMAO, which, taken together, involve stimulation of inflow and suppression of outflow of cholesterol from the cell, have also been established. Another pathway of GM influence on the development or progression of atherosclerosis, that links the presence of bacterial infection and the degree of atherosclerosis development, has also been identified. It is believed that in this case, bacterial liposaccharides (LPS) interact with low-density lipoproteins (LDL), as a result of which LDL turn into atherogenic oxidized LDL. The article discusses possible therapeutic strategies for prevention and treatment of coronary atherosclerosis associated with both decreased production of TMAO and elimination of TMA from the intestines, and regulation of microbial metabolism (inhibition of microbial enzymes that produce TMA), as well as change in the structure of GM towards increase in the proportion of microorganisms beneficial to the human body (unable to produce TMA).

About the Authors

K. A. Aitbaev
Scientific Research Institute of Molecular Biology and Medicine
Russian Federation


I. T. Murkamilov
Kyrgyz State Medical Academy named after I. K. Akhunbayev; Kyrgyz Russian Slavic University named after the First President of Russia B. N. Yeltsin
Russian Federation


Zh. A. Murkamilova
Kyrgyz Russian Slavic University named after the First President of Russia B. N. Yeltsin
Russian Federation


V. V. Fomin
FSAEI HE First Moscow State Medical University named after I. M. Sechenov
Russian Federation


I. O. Kudaibergenova
Kyrgyz State Medical Academy named after I. K. Akhunbayev
Russian Federation


T. F. Yusupova
Osh State University
Russian Federation


F. A. Yusupov
Osh State University
Russian Federation


References

1. Fang L., Gao H., Gao X. et al. Risks of Cardiovascular Events in Patients With Inflammatory Bowel Disease in China: A Retrospective Multicenter Cohort Study. Inflamm Bowel Dis. 2022 Jun 2;28(Supple 2): S52-S58. doi: 10.1093/ibd/izab326.

2. Konev Yu.V., Lazebnik L. B. [The role of intestinal microbiota endotoxin in the pathogenesis of atherosclerosis]. Therapy. 2015;(2):19-27. (in Russ.)@@ Конев Ю. В., Лазебник Л. Б. Роль эндотоксина кишечной микробиоты в патогенезе атеросклероза. Терапия.2015;2:19-27.

3. Whitman W. B., Coleman D. C., Wiebe W. J. Prokaryotes: the unseen majority. Proc Natl Acad Sci U S A. 1998 Jun 9;95(12):6578-83. doi: 10.1073/pnas.95.12.6578.

4. Markowitz V. M., Chen I. M., Chu K. et al. IMG/M-HMP: a metagenome comparative analysis system for the Human Microbiome Project. PLoS One. 2012;7(7): e40151. doi: 10.1371/journal.pone.0040151.

5. Human Microbiome Project Consortium. Structure, function and diversity of the healthy human microbiome. Nature. 2012 Jun 13;486(7402):207-14. doi: 10.1038/nature11234.

6. Turnbaugh P. J., Ley R. E., Mahowald M. A. et al. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature. 2006 Dec 21;444(7122):1027-31. doi: 10.1038/nature05414.

7. Fava F., Gitau R., Griffin B. A. et al. The type and quantity of dietary fat and carbohydrate alter faecal microbiome and short-chain fatty acid excretion in a metabolic syndrome ‘at-risk’ population.Int J Obes (Lond). 2013 Feb;37(2):216-23. doi: 10.1038/ijo.2012.33.

8. Murgas Torrazza R., Neu J. The developing intestinal microbiome and its relationship to health and disease in the neonate. J Perinatol. 2011 Apr;31 Suppl 1: S29-34. doi: 10.1038/jp.2010.172.

9. Turnbaugh P. J., Bäckhed F., Fulton L., Gordon JI. Diet-induced obesity is linked to marked but reversible alterations in the mouse distal gut microbiome. Cell Host Microbe. 2008 Apr 17;3(4):213-23. doi: 10.1016/j.chom.2008.02.015.

10. Turnbaugh P. J., Ridaura V. K., Faith J. J. et al. The effect of diet on the human gut microbiome: a metagenomic analysis in humanized gnotobiotic mice. Sci Transl Med. 2009 Nov 11;1(6):6ra14. doi: 10.1126/scitranslmed.3000322.

11. Wang Z., Klipfell E., Bennett B. J. et al. Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease. Nature. 2011 Apr 7;472(7341):57-63. doi: 10.1038/nature09922.

12. Koeth R.A., Wang Z., Lewison B. S. et al.Intestinal microbiota metabolism of L-carnitine, a nutrient in red meat, promotes atherosclerosis. Nat. Med. 2013; 19(5):576-585. doi: 10.1038/nm.3145.

13. Huang T., Yang B., Zheng J. et al. Cardiovascular disease mortality and cancer incidence in vegetarians: a meta-analysis and systematic review. Ann. Nutr. Metab. 2012;60:233-240. doi: 10.1159/000337301.

14. David L.A., Maurice C. F., Carmody R. N. et al. Diet rapidly and reproducibly alters the human gut microbiome. Nature. 2014; 505(7484):559-563. doi: 10.1038/nature12820.

15. Tang W.H.W., Hazen S. L. The contributory role of gut microbiota in cardiovascular disease. J. Clin. Invest. 2014;124(10):4204-4211. doi: 10.1172/JCI72331.

16. Lekawanvijit S., Kumfu S., Wang B. H. et al. The uremic toxin adsorbent AST-120 abrogates cardiorenal injury following myocardial infarction. PLoS One. 2013; 8(12): e83687. doi: 10.1371/journal.pone.0083687.

17. Yamamoto S., Zuo Y., Ma J. et al. Oral activated charcoal adsorbent (AST-120) ameliorates extent instability of atherosclerosis accelerated by kidney disease in apolipoprotein E-deficient mice. Nephrol. Dial. Transplant. 2011;26(8):2491-2497. doi: 10.1093/ndt/gfq759.

18. Craciun S., Marks J. A., Balskus E. P. Characterization of choline trimethhylamine-lyase expands the chemistry of glysyl radical enzymes. ACS Chem. Biol. 2014;9(7):1408-1413. doi: 10.1021/cb500113p.

19. Zhu Y., Jameson E., Crosatti M. et al. Carnitine metabolism to trimethylamine by an unusual Rieske-type oxygenase from human microbiota. Proc. Natl. Acad. Sci. USA. 2014; 111(11):4268-4273. doi: 10.1073/pnas.1316569111.

20. Wang Z., Roberts A. B., Buffa J. A. et al. Non-lethal Inhibition of Gut Microbial Trimethylamine Production for the treatment of Atherosclerosis. Cell. 2015; 163(7):1585-1595. doi: 10.1016/j.cell.2015.11.055.

21. Cashman J.R., Zhang J. Human flavin-containing monooxygenases. Annu. Rev. Pharmacol. Toxicol. 2006;46:65-100. doi: 10.1146/annurev.pharmtox.46.120604.141043.

22. Cashman J.R., Xiong Y., Lin J. et al. In vitro and in vivo inhibition of human flavin-containing monooxygenase form 3 (FMO3) in the presence of dietary indoles. Biochem. Pharmacol. 1999; 58(6):1047-1055. doi: 10.1016/s0006-2952(99)00166-5.

23. Messenger J., Clark S., Massick S., Bechtel M. A review of trimethylaminuria: (fish Odor syndrome). J. Clin. Aesthet. Dermatol. 2013;6(11):45-48.

24. Hartiala J., Bennett B. J., Tang W. H. et al.Comparative genome-wide association studies in mice and humans for trimethylamine N-oxide, a proatherogenic metabolite of choline and L-carnitine. Arterioscler. Thromb. Vasc. Biol. 2014;34(6):1307-1313.doi: 10.1161/ATVBAHA.114.303252.

25. Costales P., Castellano J., Revuelta-Lopez E. et al. Lipopolysaccharide downregulates CD91/low-density lipoprotein receptor-related protein 1 expression through SREBP-1 overexpression in human macrophages. Atherosclerosis. 2013; 227:79-88. doi: 10.1016/j.atherosclerosis.2012.12.021.

26. Zhao Y., Cui G., Zhang N. et al. Lipopolysaccharide induces endothelial cell apoptosis via activation of Na(+)/H(+) exchanger 1 and calpain-dependent degradation of Bcl-2. Biochem, Biophys. Res.Commun. 2012; 427:125-132. doi: 10.1016/j.bbrc.2012.09.023.

27. Dayoub J.C., Ortiz F., Lopez L. C. et al. Synergism between melatonin and atorvastatin against endothelial cell damage induced by lipopolysaccharide. J. Pineal. Res. 2011; 51: 324-330. doi: 10.1111/j.1600-079X.2011.00892.x.

28. Morel D.W., DiCorleto P.E., Chisolm G. M. Modulation of endotoxin-induced endothelial cell toxicity by low density lipoprotein. Lab. Invest. 1986; 55:419-426.

29. Howell K, W., Meng X., Fullerton D. A. et al. Toll-like receptor 4 mediates pxidized LDL-induced macrophage differentiation to foam cells. J. Surg. Res. 2011;171: e27-e31. doi: 10.1016/j.jss.2011.06.033.

30. Wiedermann C.J., Kiechl S., Dumzendorfer S. et al. Association of endotoxemia with carotid atherosclerosis and cardiovascular disease: prospective results from the Bruneck Study. J. Am. Coll. Cardiol. 1999; 34:1975-1981. doi: 10.1016/s0735-1097(99)00448-9.

31. Lam V., Su J., Koprowski S. et al.Intestinal microbiota determine severity of myocardial infarction in rats. FASEB J. 2012;26:1727-1735. doi: 10.1096/fj.11-197921.

32. Stone A.F., Mendall M. A., Kaski J. C. et al. Effect of treatment for Chlamydia pneumonia and Helicobacter Pylori on markers of inflammation and cardiac events in patients with acute coronary syndromes: South Thames Trial of Antibiotics in Myocardial Infarction and Unstable Angina (STAMINA). Circulation. 2002;106:1219-1223. doi: 10.1161/01.cir.0000027820.66786.cf.

33. Gurfinkel E., Bozovich G., Daroca A. et al. Randomised trial of roxitromycin in non-Q-wave coronary syndromes: ROXIS Pilot Study. Lancet. 1997;350:404-407. doi: 10.1016/s0140-6736(97)07201-2.

34. O’Connor C.M., Dunne M. W., Pfeffer M. A. et al. Azitromycin for the secondary prevention of coronary heart disease events: the WIZARD study: a randomized controlled trial. JAMA. 2003;290:1459-1466. doi: 10.1001/jama.290.11.1459.

35. Arutyunov G.P., Kostyukevich O. I., Serov R. A. et al. Collagen accumulation and dysfunctional mucosal barrier of the small intestine in patients with chronic heart failure.Int. J. Cardiol. 2008;125:240-245. doi: 10.1016/j.ijcard.2007.11.103.

36. Lazebnik L. B., Konev Ju.V. [New understanding of the role of the microbiota in the pathogenesis of metabolic syndrome]. Consilium medicum.2014;8:77-82. (in Russ.)@@ Лазебник Л. Б., Конев Ю. В. Новое понимание роли микробиоты в патогенезе метаболического синдрома. Consilium medicum. 2014;8:77-82.

37. Kaburova A. N., Drapkina O. M., Yudin S. M. et al. Relation of intestinal microbiota composition to extracellular matrix volume assessed by myocardial T1 mapping in patients with chronic heart failure and preserved left ventricular ejection fraction. Profilakticheskaya Meditsina. 2021;24(11):28-35. (in Russ.)@@ Кабурова А. Н., Драпкина О. М., Юдин С. М., и др. Связь состава микробиоты кишечника с объемом внеклеточного матрикса, оцененного методом Т1-картирования миокарда, у пациентов с хронической сердечной недостаточностью и сохраненной фракцией выброса левого желудочка. Профилактическая медицина. 2021;24(11):28-35.

38. Vlasov A. A., Salikova S. P., Golovkin N. V., Grinevich V. B.Intestinal Microbial-tissue Complex and Chronic Heart Failure (part 1): Pathogenesis. Rational Pharmacotherapy in Cardiology. 2021;17(3):462-469. (in Russ.) doi: 10.20996/1819-6446-2021-06-12.@@ Власов А. А., Саликова С. П., Головкин Н. В., Гриневич В. Б. Микробно-тканевой комплекс кишечника и хроническая сердечная недостаточность (часть 1): патогенез. Рациональная Фармакотерапия в Кардиологии.2021;17(3):462-469. doi: 10.20996/1819-6446-2021-06-12.

39. Drapkina O. M., Shirobokikh O. E. Role of Gut Microbiota in the Pathogenesis of Cardiovascular Diseases and Metabolic Syndrome. Rational Pharmacotherapy in Cardiology. 2018;14(4):567-574. (in Russ.)@@ Драпкина О. М., Широбоких О. Е. Роль кишечной микробиоты в патогенезе сердечно-сосудистых заболеваний и метаболического синдрома. Рациональная Фармакотерапия в Кардиологии. 2018;14(4):567-574.

40. Niebauer J., Volk H. D., Kemp N. et al. Endotoxin and immune activation in chronic heart failure: a prospective cohort study. Lancet. 1999; 353:1838-1842. doi: 10.1016/S0140-6736(98)09286-1.

41. Pasini E., Aquilani R., Testa C. et al. Pathogenic Gut flora in patients with chronic Heart Failure. JCHF. 2016; 4(3):220-227. doi: 10.1016/j.jchf.2015.10.009.

42. Collins H.L., Drazul-Schrader D., Sulpizio A. C. et al. L-Carnitine intake and high trimethylamine N-oxide plasma levels correlate with low aortic lesions in Apo E-/- transgenic mice expressing CETP. Atherosclerosis. 2016; 244:29-37. doi: 10.1016/j.atherosclerosis.2015.10.108.


Review

For citations:


Aitbaev K.A., Murkamilov I.T., Murkamilova Zh.A., Fomin V.V., Kudaibergenova I.O., Yusupova T.F., Yusupov F.A. Cardiovascular diseases: pathophysiological role of gut microbiota and new targets for treatment and prevention. Experimental and Clinical Gastroenterology. 2023;(9):201-208. https://doi.org/10.31146/1682-8658-ecg-217-9-201-208

Views: 268


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1682-8658 (Print)