Preview

Экспериментальная и клиническая гастроэнтерология

Расширенный поиск

Антибиотики: триумф цивилизации и его обратная сторона

https://doi.org/10.31146/1682-8658-ecg-217-9-177-185

Аннотация

Синтез антибактериальных препаратов и последующее их использование в клинической практике способствовало спасению огромного количества жизней людей на глобальном мировом пространстве. В тоже время они способны нанести значительный вред, включая инфекции Clostridium difficile, в формирование антибиотикорезистентности и изменения в микробиоме человека, последствия которых еще предстоит оценить. Программы управления назначением антибиотиков становятся все более распространенным явлением в современной клинической практике, требующим обширных знаний, базирующихся на клинических, геномных и лабораторных данных. Все больше данных свидетельствуют о роли антибиотиков в манифестации аллергических, воспалительных, обменных, и функциональных заболеваний. С другой стороны, появляются все больше данных о роли антмикробных препаратов в канцеропревенции и терапии заболеваний вирусной природы.

Об авторах

М. А. Осадчук
Федеральное государственное автономное образовательное учреждение высшего образования Первый Московский государственный медицинский университет имени И. М. Сеченова Министерства здравоохранения Российской Федерации (Сеченовский Университет)
Россия


М. М. Осадчук
Государственное бюджетное учреждение здравоохранения города Москвы «Городская поликлиника № 52 Департамента здравоохранения города Москвы»
Россия


Е. Д. Миронова
Федеральное государственное автономное образовательное учреждение высшего образования Первый Московский государственный медицинский университет имени И. М. Сеченова Министерства здравоохранения Российской Федерации (Сеченовский Университет)
Россия


Список литературы

1. Control of Infectious Diseases, 1900-1999. JAMA. 1999;282(11):1029. doi: 10.1001/jama.282.11.1029.

2. Antimicrobial Resistance Collaborators. Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis. Lancet. 2022;399(10325):629-655. doi: 10.1016/S0140-6736(21)02724-0.

3. Davey P, Marwick CA, Scott CL, Charani E, McNeil K, Brown E, et al.Interventions to improve antibiotic prescribing practices for hospital inpatients. Cochrane Database Syst Rev. 2017;2: CD003543. doi: 10.1002/ 14651858.CD003543.pub4.

4. Kraus EM, Pelzl S, Szecsenyi J, Laux G. Antibiotic prescribing for acute lower respiratory tract infections (LRTI) - guideline adherence in the German primary care setting: An analysis of routine data. PLoS One. 2017;12(3): e0174584. doi: 10.1371/journal.pone.0174584.

5. Plachouras D, Kärki T, Hansen S, Hopkins S, Lyytikäinen O, Moro ML, et al. Antimicrobial use in European acute care hospitals: results from the second point prevalence survey (PPS) of healthcare-associated infections and antimicrobial use, 2016 to 2017. Euro Surveill. 2018;23(46):1800393. doi: 10.2807/1560-7917.ES.23.46.1800393.

6. McFarland LV. Renewed interest in a difficult disease: Clostridium difficile infections - epidemiology and current treatment strategies. Curr Opin Gastroenterol. 2009;25(1):24-35. doi: 10.1097/MOG.0b013e32831da7c4.

7. Mallapragada S, Wadhwa A, Agrawal P. Antimicrobial peptides: The miraculous biological molecules. J Indian Soc Periodontol. 2017;21(6):434-438. doi: 10.4103/jisp.jisp_325_16.

8. Zimmermann P, Curtis N. The effect of antibiotics on the composition of the intestinal microbiota - a systematic review. J Infect. 2019;79(6):471-489. doi: 10.1016/j.jinf.2019.10.008.

9. Kamada N, Chen GY, Inohara N, Núñez G. Control of pathogens and pathobionts by the gut microbiota. Nat Immunol. 2013;14(7):685-690. doi: 10.1038/ni.2608.

10. Khodamoradi Y, Kessel J, Vehreschild JJ, Vehreschild MJGT. The Role of Microbiota in Preventing Multidrug-Resistant Bacterial Infections. Dtsch Arztebl Int. 2019;116(40):670-676. doi: 10.3238/arztebl.2019.0670.

11. de Jong E, van Oers JA, Beishuizen A, Vos P, Vermeijden WJ, Haas LE, et al. Efficacy and safety of procalcitonin guidance in reducing the duration of antibiotic treatment in critically ill patients: a randomised, controlled, open-label trial. Lancet Infect Dis. 2016;16(7):819-827. doi: 10.1016/S1473-3099(16)00053-0.

12. Barlow G, Patterson J, Stultz J, Pakyz AL. Associations between antimicrobial stewardship program elements and Clostridium difficile infection performance. Am J Infect Control. 2017;45(12):1399-1401. doi: 10.1016/j.ajic.2017.06.022.

13. Faith JJ, Guruge JL, Charbonneau M, Subramanian S, Seedorf H, Goodman AL, et al. The long-term stability of the human gut microbiota. Science. 2013; 341(6141):1237439. doi: 10.1126/science.1237439.

14. Schubert AM, Sinani H, Schloss PD. Antibiotic-Induced Alterations of the Murine Gut Microbiota and Subsequent Effects on Colonization Resistance against Clostridium difficile. mBio. 2015;6(4): e00974. doi: 10.1128/mBio.00974-15.

15. Annual Epidemiological Report for 2016 Clostridium difficile infections. Published 2018. Accessed July 4, 2022. https://www.ecdc.europa.eu/sites/default/files/documents/AER_for_2016-C-difficile_0.pdf.

16. Linsenmeyer K, O’Brien W, Brecher SM, Strymish J, Rochman A, Itani K, et al. Clostridium difficile Screening for Colonization During an Outbreak Setting. Clin Infect Dis. 2018;67(12):1912-1914. doi: 10.1093/cid/ciy455.

17. Clanton J, Subichin M, Drolshagen K, Daley T, Firstenberg MS. Fulminant Clostridium difficile infection: An association with prior appendectomy? World J Gastrointest Surg. 2013;5(8):233-238. doi: 10.4240/wjgs.v5.i8.233.

18. Garrido-Mesa N, Zarzuelo A, Gálvez J. Minocycline: far beyond an antibiotic. Br J Pharmacol. 2013;169(2):337-352. doi: 10.1111/bph.12139.

19. Unterhauser K, Pöltl L, Schneditz G, Kienesberger S, Glabonjat RA, Kitsera M, et al. Klebsiella oxytoca enterotoxins tilimycin and tilivalline have distinct host DNA-damaging and microtubule-stabilizing activities. Proc Natl Acad Sci U S A. 2019;116(9):3774-3783. doi: 10.1073/pnas.1819154116.

20. Kwok CS, Arthur AK, Anibueze CI, Singh S, Cavallazzi R, Loke YK. Risk of Clostridium difficile infection with acid suppressing drugs and antibiotics: meta-analysis. Am J Gastroenterol. 2012;107(7):1011-1019. doi: 10.1038/ajg.2012.108.

21. Dingle KE, Didelot X, Quan TP, Eyre DW, Stoesser N, Golubchik T, et al. Effects of control interventions on Clostridium difficile infection in England: an observational study. Lancet Infect Dis. 2017;17(4):411-421. doi: 10.1016/S1473-3099(16)30514-X.

22. Guery B, Menichetti F, Anttila VJ, Adomakoh N, Aguado JM, Bisnauthsing K, et al. Extended-pulsed fidaxomicin versus vancomycin for Clostridium difficile infection in patients 60 years and older (EXTEND): a randomised, controlled, open-label, phase 3b/4 trial. Lancet Infect Dis. 2018;18(3):296-307. doi: 10.1016/S1473-3099(17)30751-X.

23. Bisgaard H, Li N, Bonnelykke K, Chawes BL, Skov T, Paludan-Müller G, et al. Reduced diversity of the intestinal microbiota during infancy is associated with increased risk of allergic disease at school age. J Allergy Clin Immunol. 2011;128(3):646-652.e1-5. doi: 10.1016/j.jaci.2011.04.060.

24. Abrahamsson TR, Jakobsson HE, Andersson AF, Björkstén B, Engstrand L, Jenmalm MC. Low diversity of the gut microbiota in infants with atopic eczema. J Allergy Clin Immunol. 2012;129(2):434-440, 440.e1-2. doi: 10.1016/j.jaci.2011.10.025.

25. McKeever TM, Lewis SA, Smith C, Collins J, Heatlie H, Frischer M, et al. Early exposure to infections and antibiotics and the incidence of allergic disease: a birth cohort study with the West Midlands General Practice Research Database. J Allergy Clin Immunol. 2002;109(1):43-50. doi: 10.1067/mai.2002.121016.

26. Jedrychowski W, Gałaś A, Whyatt R, Perera F. The prenatal use of antibiotics and the development of allergic disease in one year old infants. A preliminary study.Int J Occup Med Environ Health. 2006;19(1):70-76. doi: 10.2478/v10001-006-0010-0.

27. Mai V, Torrazza RM, Ukhanova M, Wang X, Sun Y, Li N, et al. Distortions in development of intestinal microbiota associated with late onset sepsis in preterm infants. PLoS One. 2013;8(1): e52876. doi: 10.1371/journal.pone.0052876.

28. Kenyon SL, Taylor DJ, Tarnow-Mordi W, ORACLE Collaborative Group. Broad-spectrum antibiotics for preterm, prelabour rupture of fetal membranes: the ORACLE I randomised trial. ORACLE Collaborative Group. Lancet. 2001;357(9261):979-988. doi: 10.1016/s0140-6736(00)04233-1.

29. Hildebrand H, Malmborg P, Askling J, Ekbom A, Montgomery SM. Early-life exposures associated with antibiotic use and risk of subsequent Crohn’s disease. Scand J Gastroenterol. 2008;43(8):961-966. doi: 10.1080/00365520801971736.

30. Vanderploeg R, Panaccione R, Ghosh S, Rioux K. Influences of intestinal bacteria in human inflammatory bowel disease. Infect Dis Clin North Am. 2010;24(4):977-993, ix. doi: 10.1016/j.idc.2010.07.008.

31. Tabibian JH, Talwalkar JA, Lindor KD. Role of the microbiota and antibiotics in primary sclerosing cholangitis. Biomed Res Int. 2013;2013:389537. doi: 10.1155/2013/389537.

32. Tabibian JH, Weeding E, Jorgensen RA, Petz JL, Keach JC, Talwalkar JA, et al. Randomised clinical trial: vancomycin or metronidazole in patients with primary sclerosing cholangitis - a pilot study. Aliment Pharmacol Ther. 2013;37(6):604-612. doi: 10.1111/apt.12232.

33. Goode EC, Rushbrook SM. A review of the medical treatment of primary sclerosing cholangitis in the 21st century. Ther Adv Chronic Dis. 2016;7(1):68-85. doi: 10.1177/2040622315605821.

34. Sonoda A, Kamiyama N, Ozaka S, Gendo Y, Ozaki T, Hirose H, et al. Oral administration of antibiotics results in fecal occult bleeding due to metabolic disorders and defective proliferation of the gut epithelial cell in mice. Genes Cells. 2018;23(12):1043-1055. doi: 10.1111/gtc.12649.

35. Miyauchi R, Kinoshita K, Tokuda Y. Clarithromycin-induced haemorrhagic colitis. BMJ Case Rep. 2013;2013: bcr2013009984. doi: 10.1136/bcr-2013-009984.

36. Graham DY, Opekun AR, Willingham FF, Qureshi WA. Visible small-intestinal mucosal injury in chronic NSAID users. Clin Gastroenterol Hepatol. 2005;3(1):55-59. doi: 10.1016/s1542-3565(04)00603-2.

37. Bjarnason I, Hayllar J, Smethurst P, Price A, Gumpel MJ. Metronidazole reduces intestinal inflammation and blood loss in non-steroidal anti-inflammatory drug induced enteropathy. Gut. 1992;33(9):1204-1208. doi: 10.1136/gut.33.9.1204.

38. Kent TH, Cardelli RM, Stamler FW. Small intestinal ulcers and intestinal flora in rats given indomethacin. Am J Pathol. 1969;54(2):237-249.

39. Scarpignato C, Dolak W, Lanas A, Matzneller P, Renzulli C, Grimaldi M, et al. Rifaximin Reduces the Number and Severity of Intestinal Lesions Associated With Use of Nonsteroidal Anti-Inflammatory Drugs in Humans. Gastroenterology. 2017;152(5):980-982.e3. doi: 10.1053/j.gastro.2016.12.007.

40. De Clercq E. Chemotherapy of respiratory syncytial virus infections: the final breakthrough.Int J Antimicrob Agents. 2015;45(3):234-237. doi: 10.1016/j.ijantimicag.2014.12.025.

41. Haynes AK, Prill MM, Iwane MK, Gerber SI, Centers for Disease Control and Prevention (CDC). Respiratory syncytial virus - United States, July 2012-June 2014. MMWR Morb Mortal Wkly Rep. 2014;63(48):1133-1136.

42. Turner TL, Kopp BT, Paul G, Landgrave LC, Hayes D, Thompson R. Respiratory syncytial virus: current and emerging treatment options. Clinicoecon Outcomes Res. 2014;6:217-225. doi: 10.2147/CEOR.S60710.

43. Homaira N, Rawlinson W, Snelling TL, Jaffe A. Effectiveness of Palivizumab in Preventing RSV Hospitalization in High Risk Children: A Real-World Perspective.Int J Pediatr. 2014;2014:571609. doi: 10.1155/2014/571609.

44. Mishra MK, Ghosh D, Duseja R, Basu A. Antioxidant potential of Minocycline in Japanese Encephalitis Virus infection in murine neuroblastoma cells: correlation with membrane fluidity and cell death. Neurochem Int. 2009;54(7):464-470. doi: 10.1016/j.neuint.2009.01.022.

45. Campbell JH, Burdo TH, Autissier P, Bombardier JP, Westmoreland SV, Soulas C, et al. Minocycline inhibition of monocyte activation correlates with neuronal protection in SIV neuroAIDS. PLoS One. 2011;6(4): e18688. doi: 10.1371/journal.pone.0018688.

46. Szeto GL, Brice AK, Yang HC, Barber SA, Siliciano RF, Clements JE. Minocycline attenuates HIV infection and reactivation by suppressing cellular activation in human CD4+ T cells. J Infect Dis. 2010;201(8):1132-1140. doi: 10.1086/651277.

47. Josset L, Zeng H, Kelly SM, Tumpey TM, Katze MG. Transcriptomic characterization of the novel avian-origin influenza A (H7N9) virus: specific host response and responses intermediate between avian (H5N1 and H7N7) and human (H3N2) viruses and implications for treatment options. mBio. 2014;5(1): e01102-01113. doi: 10.1128/mBio.01102-13.

48. Huang YC, Li Z, Hyseni X, Schmitt M, Devlin RB, Karoly ED, Soukup JM. Identification of gene biomarkers for respiratory syncytial virus infection in a bronchial epithelial cell line. Genomic Med. 2008;2(3-4):113-125. doi: 10.1007/s11568-009-9080-y.

49. Durbán A, Abellán JJ, Jiménez-Hernández N, Salgado P, Ponce M, Ponce J, et al. Structural alterations of faecal and mucosa-associated bacterial communities in irritable bowel syndrome. Environ Microbiol Rep. 2012;4(2):242-247. doi: 10.1111/j.1758-2229.2012.00327.x.

50. Simrén M, Barbara G, Flint HJ, Spiegel BM, Spiller RC, Vanner S, et al.Intestinal microbiota in functional bowel disorders: a Rome foundation report. Gut. 2013;62(1):159-176. doi: 10.1136/gutjnl-2012-302167.

51. Zanini B, Ricci C, Bandera F, Caselani F, Magni A, Laronga AM, et al. Incidence of post-infectious irritable bowel syndrome and functional intestinal disorders following a water-borne viral gastroenteritis outbreak. Am J Gastroenterol. 2012;107(6):891-899. doi: 10.1038/ajg.2012.102.

52. Dayananda P, Wilcox MH. Irritable bowel syndrome following Clostridium difficile infection. Curr Opin Gastroenterol. 2019;35(1):1-5. doi: 10.1097/MOG.0000000000000490.

53. Shah ED, Basseri RJ, Chong K, Pimentel M. Abnormal breath testing in IBS: a meta-analysis. Dig Dis Sci. 2010;55(9):2441-2449. doi: 10.1007/s10620-010-1276-4.

54. Li G, Yang M, Jin Y, Li Y, Qian W, Xiong H, et al. Involvement of shared mucosal-associated microbiota in the duodenum and rectum in diarrhea-predominant irritable bowel syndrome. J Gastroenterol Hepatol. 2018;33(6):1220-1226. doi: 10.1111/jgh.14059.

55. Nguyen LH, Örtqvist AK, Cao Y, Simon TG, Roelstraete B, Song M, et al. Antibiotic use and the development of inflammatory bowel disease: a national case-control study in Sweden. Lancet Gastroenterol Hepatol. 2020;5(11):986-995. doi: 10.1016/S2468-1253(20)30267-3.

56. van der Sloot KWJ, Amini M, Peters V, Dijkstra G, Alizadeh BZ. Inflammatory Bowel Diseases: Review of Known Environmental Protective and Risk Factors Involved. Inflamm Bowel Dis. 2017;23(9):1499-1509. doi: 10.1097/MIB.0000000000001217.

57. Reid G. Probiotic use in an infectious disease setting. Expert Rev Anti Infect Ther. 2017;15(5):449-455. doi: 10.1080/14787210.2017.1300061.

58. Nogacka AM, Salazar N, Arboleya S, Suárez M, Fernández N, Solís G, et al. Early microbiota, antibiotics and health. Cell Mol Life Sci. 2018;75(1):83-91. doi: 10.1007/s00018-017-2670-2.

59. Dawson-Hahn EE, Rhee KE. The association between antibiotics in the first year of life and child growth trajectory. BMC Pediatr. 2019;19(1):23. doi: 10.1186/s12887-018-1363-9.

60. Turnbaugh PJ, Ley RE, Mahowald MA, Magrini V, Mardis ER, Gordon JI. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature. 2006;444(7122):1027-1031. doi: 10.1038/nature05414.


Рецензия

Для цитирования:


Осадчук М.А., Осадчук М.М., Миронова Е.Д. Антибиотики: триумф цивилизации и его обратная сторона. Экспериментальная и клиническая гастроэнтерология. 2023;(9):177-185. https://doi.org/10.31146/1682-8658-ecg-217-9-177-185

For citation:


Osadchuk M.A., Osadchuk M.M., Mironova E.D. Antibiotics: the triumph of civilization and its other side. Experimental and Clinical Gastroenterology. 2023;(9):177-185. https://doi.org/10.31146/1682-8658-ecg-217-9-177-185

Просмотров: 245


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 1682-8658 (Print)