Preview

Experimental and Clinical Gastroenterology

Advanced search

Microbiota state of the gastro-intestinal tract of laboratory animals with signs of metabolic dysbiosis during treatment with experimental medical drug

https://doi.org/10.31146/1682-8658-ecg-217-9-117-124

Abstract

Objective. The work was performed with the purpose to study microbiota state of the gastro-intestinal tract (GIT) of C57Bl/6 mice with signs of metabolic dysbiosis (MD) induced with the use of fructose solution or with poloxamer 407 (P 407), during treatment with combination of sodium polyprenylphosphate (PPP) and beta-sitosterol (BSS). Materials and Methods. MD was induced in mice with drinking 20 per cent water fructose solution. MD was also induced in mice by intraperitoneal use of P 407 at the dose of 500 mg/kg two times per week during ten weeks. The mice of experimental groups received intragastrically combination of PPP and BSS preparations (0,2 ml of the suspension per mouse). Medical scheme consisted in use of preparations five times per week starting after one month from the first day of fructose drinking or of P 407 use and prolonging for one month else. The quantity of viable bacteria in the probes obtained was measured by the direct passage of the material tested on elective or selective nutritional media with following count of colonies grown. Results. The drink of fructose solution or use of P 407 caused the changes of GIT microbiota state that confirmed development of signs of MD in mice. Treatment with PPP and BSS combination was shown to cause actual tendencies to restore the normal GIT microbiota state. Conclusion. Combination of PPP and BSS preparations seemed to be efficient as a novel approach to correction of GIT microbiota state perturbed due to pathogenesis of MD considered as one of the primary signs of metabolic syndrome in mice.

About the Authors

T. N. Nikolaeva
National Research Centre for Epidemiology and Microbiology named after the honorary academician N. F. Gamaleya
Russian Federation


S. B. Cheknev
National Research Centre for Epidemiology and Microbiology named after the honorary academician N. F. Gamaleya
Russian Federation


T. N. Kozhevnikova
National Research Centre for Epidemiology and Microbiology named after the honorary academician N. F. Gamaleya
Russian Federation


E. I. Vostrova
National Research Centre for Epidemiology and Microbiology named after the honorary academician N. F. Gamaleya
Russian Federation


O. Yu. Sosnovskaya
National Research Centre for Epidemiology and Microbiology named after the honorary academician N. F. Gamaleya
Russian Federation


M. A. Sarycheva
National Research Centre for Epidemiology and Microbiology named after the honorary academician N. F. Gamaleya
Russian Federation


V. V. Kozlov
National Research Centre for Epidemiology and Microbiology named after the honorary academician N. F. Gamaleya
Russian Federation


E. A. Grigorieva
National Research Centre for Epidemiology and Microbiology named after the honorary academician N. F. Gamaleya
Russian Federation


A. V. Vostrov
National Research Centre for Epidemiology and Microbiology named after the honorary academician N. F. Gamaleya
Russian Federation


A. V. Sanin
National Research Centre for Epidemiology and Microbiology named after the honorary academician N. F. Gamaleya
Russian Federation


A. N. Narovlyansky
National Research Centre for Epidemiology and Microbiology named after the honorary academician N. F. Gamaleya
Russian Federation


A. V. Pronin
National Research Centre for Epidemiology and Microbiology named after the honorary academician N. F. Gamaleya
Russian Federation


References

1. Drapkina O.M., Korneeva O. N. Gut microbiota and obesity: Pathogenetic relationships and ways to normalize the intestinal microflora. Terapevt. Arkhiv. 2016; 88(9): 135-42. (in Russ.) doi: 10.17116/terarkh 2016889135-142.@@ Драпкина О. М., Корнеева О. Н. Кишечная микробиота и ожирение. Патогенетические взаимосвязи и пути нормализации кишечной микрофлоры. Терапевт. архив. 2016; 88(9): 135-42. doi: 10.17116/terarkh 2016889135-142.

2. Kuznetsova E. E., Gorokhova V. G., Bogorodskaya S. L. The microbiota of intestine. The role in development of various pathologies. Klin. Lab. Diagnostika. 2016; 61(10): 723-6. (in Russ.) doi: 10.18821/0869-2084-2016-61-10-723-726.@@ Кузнецова Э. Э., Горохова В. Г., Богородская С. Л. Микробиота кишечника. Роль в развитии различных патологий. Клин. лаб. диагностика. 2016; 61(10): 723-6. doi: 10.18821/0869-2084-2016-61-10-723-726.

3. Oynotkinova O. Sh., Nikonov E. L., Gioeva I. A. The role of microbiota in pathogenesis of dyslipidemia and associated metabolic disorders. Evidence-Based Gastroenterology. 2017; 6(2): 29-34. (in Russ.) doi: 10.17116/dokgastro 20176229-34.@@ Ойноткинова О. Ш., Никонов Е. Л., Гиоева И. З. Роль микробиоты кишечника в патогенезе дислипидемии и ассоциированных метаболических нарушений. Доказат. гастроэнтерология. 2017; 6(2): 29-34. doi: 10.17116/dokgastro 20176229-34.

4. Thursby E., Juge N.Introduction to the human gut microbiota. Biochem. J. 2017; 474(11): 1823-36. doi: 10.1042/BCJ 20160510.

5. Grinevich V. N., Tkacheva O. N., Egshatyan L. V., Sas E. I., Efimov O. I. Contribution of the gut microbiota to the pathogenesis of insulin resistance. Profilakt Meditsina. 2015; 18(1): 54-8. (in Russ.) doi: 10.17116/profmed 201518154-58.@@ Гриневич В. Б., Ткачёва О. Н., Егшатян Л. В., Сас Е. И., Ефимов О. И. Вклад кишечной микробиоты в патогенез инсулинорезистентности. Профилакт. медицина. 2015; 18(1): 54-8. doi: 10.17116/profmed 201518154-58.

6. Ussar S., Fujisaka S., Kahn C. R.Interaction between host genetics and gut microbiome in diabetes and metabolic syndrome. Molec. Metabolism. 2016; 5(9): 795-803. doi: 10.1016/j.molmet. 2016.07.004.

7. Bukharin O. V., Ivanova E. V., Perunova N. B., Chainikova I. N. The role of bifidobacteria in formation of human immune homeostasis. Zh. Microbiol. (Moscow). 2015; 6: 98-104. (in Russ.)@@ Бухарин О. В., Иванова Е. В., Перунова Н. Б., Чайникова И. Н. Роль бифидобактерий в формировании иммунного гомеостаза человека. Журн. микробиол., эпидемиол. и иммунобиологии. 2015; 6: 98-104.

8. Kashukh Y. A., Ivashkin V. T. Probiotics, metabolism and the functional condition of cardio-vascular system.Russ. J. Gastroenterol., Hepatol., Coloproctology. 2016; 26(1): 8-14. (in Russ). doi: 10.22416/1382-4376-2016-26-1-8-14.@@ Кашух Е. Е., Ивашкин В. Т. Пробиотики, метаболизм и функциональное состояние сердечно-сосудистой системы. Росс. журн. гастроэнтерол., гепатол., колопроктологии. 2016; 26(1): 8-14. doi: 10.22416/1382-4376-2016-26-1-8-14.

9. Mischke M., Plösch T. The gut microbiota and their metabolites: potential implications for the host epigenome. Adv. Exp. Med. and Biology. 2016; 902: 33-4. doi: 10.1007/978-3-319-31248-4_3.

10. Kotrova A. D., Shishkin A. N., Semienova O. I., Slepykh L. A. The role of gut microbiota in the development of metabolic syndrome. Experimental and Clinical Gastroenterology. 2019; 172(12): 101-8. (in Russ). doi: 10.31146/1682-8658-ecg-172-12-101-108.@@ Котрова А. Д., Шишкин А. Н., Семёнова О. И., Слепых А. А. Роль кишечной микробиоты в развитии метаболического синдрома. Экспериментальная и клиническая гастроэнтерология. 2019; 172(12): 101-8. doi: 10.31146/1682-8658-ecg-172-12-101-108.

11. Brown K., Decoffe D., Molcan E., Gibson D. L. Diet-induced dysbiosis of the intestinal microbiota and the effects on immunity and disease. Nutrients. 2012; 4: 1095-119. doi: 10.3390/nu4081095.

12. Leshchenko D. V., Kostiuk N. V., Belyakova M. B., Egorova E. N., Miniaev M. V., Petrova M. B. Diet-induced animal models of metabolic syndrome. Upper Volga Med. J. 2015; 2: 34-9. (in Russ.)@@ Лещенко Д. В., Костюк Н. В., Белякова М. Б., Егорова Е. Н., Миняев М. В., Петрова М. Б. Диетически индуцированные животные модели метаболического синдрома. Верхневолжский медиц. журнал. 2015; 14(2): 34-9.

13. Kavanagh K., Wylie A. T., Tucker K. L., Hamp T. J., Gharaibeh R. Z., Fodor A. A., Cullen J. M. Dietary fructose induces endotoxemia and hepatic injury in calorically controlled primates. Amer. J. Clin. Nutrition. 2013; 98(2): 349-57. doi: 10.3945/ajcn.112.057331.

14. Mamikutty N., Thent Z. C., Sapri S. R., Sahruddin N. N., Mohd Yusof M. R., Haji Suhaimi F. The establishment of metabolic syndrome model by induction of fructose drinking water in male Wistar rats. Biomed Res Int. 2014;2014:263897. doi: 10.1155/2014/263897.

15. Reshetnyak M. V., Khirmanov V. N., Zybina N. N., Frolova M. Y., Sakuta G. A., Kudryavtsev B. N. Fructose-fed model of the metabolic syndrome: Pathogenetic relationships between metabolic disorders. Med. Acad. J. 2011; 11(3): 23-7. (in Russ.) doi: 10.17816/MAI 11323-27.@@ Решетняк М. В., Хирманов В. Н., Зыбина Н. Н., Фролова М. Ю., Сакута Г. А., Кудрявцев В. Н. Модель метаболического синдрома, вызванного кормлением фруктозой: патогенетические взаимосвязи обменных нарушений. Медиц. академ. журнал. 2011; 11(3): 23-7. doi: 10.17816/MAI 11323-27.

16. Afineevskaya A. Yu., Mal’kov O.А., Govorukhina A. A. The role of intestinal microbiota in the pathogenesis of atherosclerosis and promising preventive measures. Zh. Med. Biol. Issledovaniy. 2020; 8(2): 184-93. (in Russ.) doi: 10.37482/2542-1298-Z009.@@ Афинеевская А. Ю., Мальков О. А., Говорухина А. А. Роль кишечной микробиоты в патогенезе атеросклероза и перспективные меры профилактики. Журн. медико-биол. исследований. 2020; 8(2): 184-93. doi: 10.37482/2542-1298-Z009.

17. Kaibysheva V. O., Nikonov E. L. Probiotics from the standpoint of evidence-based medicine. Evidence-Based Gastroenterology. 2019; 8(3): 45-54. (in Russ.) doi: 10.17116/dokgastro 2019803145.@@ Кайбышева В. О., Никонов Е. Л. Пробиотики с позиции доказательной медицины. Доказат. гастроэнтерология. 2019; 8(3): 45-54. doi: 10.17116/dokgastro 2019803145.

18. Tursunova N. V., Klinnikova M. G., Tornuev Y. V., Lushnikova E. L. Plant polyproenols as a prospective class of compounds stimulating the regenerative processes. Modern Probl. Sci. Education. 2019; 4: 141-52. (in Russ.) doi: 10.17513/spno.28977.@@ Турсунова Н. В., Клинникова М. Г., Торнуев Ю. В., Лушникова Е. Л. Растительные полипренолы как перспективный класс соединений, стимулирующих регенераторные процессы. Соврем. пробл. науки и образования. 2019; 4: 141-52. doi: 10.17513/spno.28977.

19. Sanin A. V., Ganshina I. V., Sudiyna G. F. et al. Phosphorilated polyprenols - a novel class of compounds with anti-inflammatory and bronchial spasmolytic activity. Infect. Immunity. 2011; 1(4): 355-60. (in Russ.)@@ Санин А. В., Ганшина И. В., Судьина Г. Ф. и др. Фосфорилированные полипренолы - новый класс соединений с противовоспалительной и бронхолитической активностью. Инфекция и иммунитет. 2011; 1(4): 355-360.

20. Narovlyansky A. N., Pronin A. V., Sanin A. V. et al. Isoprenoids: Polyprenols and Polyprenyl Phosphates as Physiologically Important Metabolic Regulators. Nova Science Publishers, Inc, NY, USA, 2018. - 183 p.

21. Khuchieva M. A., Perova N. V., Akhmedzhanov N. M. Plant sterols and stanols as dietary factors reducing hypercholesterolemia by inhibiting intestinal cholesterol absorption. Cardiovasc. Ther. Prevention. 2011; 10(6): 124-32. (in Russ.) doi: 10.15829/1728-8800-2011-6-124-132.@@ Хучиева М. А., Перова Н. В., Ахмеджанов Н. М. Растительные стерины и станолы как пищевые факторы, снижающие гиперхолестеринемию путём ингибирования всасывания холестерина в кишечнике. Кардиоваск. терапия и профилактика. 2011; 10(6): 124-32. doi: 10.15829/1728-8800-2011-6-124-132.


Review

For citations:


Nikolaeva T.N., Cheknev S.B., Kozhevnikova T.N., Vostrova E.I., Sosnovskaya O.Yu., Sarycheva M.A., Kozlov V.V., Grigorieva E.A., Vostrov A.V., Sanin A.V., Narovlyansky A.N., Pronin A.V. Microbiota state of the gastro-intestinal tract of laboratory animals with signs of metabolic dysbiosis during treatment with experimental medical drug. Experimental and Clinical Gastroenterology. 2023;(9):117-124. (In Russ.) https://doi.org/10.31146/1682-8658-ecg-217-9-117-124

Views: 231


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1682-8658 (Print)