The concept of enzymatic disintegration of nutrients in the upper gastrointestinal tract
https://doi.org/10.31146/1682-8658-ecg-217-9-56-67
Abstract
About the Authors
V. A. AleynikRussian Federation
S. M. Babich
Russian Federation
References
1. Antipova A.S. [Thermodynamic aspects of the influence of low molecular weight carbohydrates and polysaccharides on the functional properties of proteins. Diss… Candidate Chim. sci.]. Moscow, 2008. 25. (in Russ.)@@ Антипова А. С. Термодинамические аспекты влияния низкомолекулярных углеводов и полисахаридов на функциональные свойства белков: автореф. дис. канд.хим. наук - Москва, 2008. 25.
2. Smith F., Pan X., Bellido V. et al. Digestibility of gluten proteins is reduced by baking and enhanced by starch digestion. Molecular nutrition & food research. 2015 Jul 23; 59(10): 2034-2043. doi: 10.1002/mnfr.201500262
3. Koutina G., Ray C. A., Lametsch, R. & Ipsen R. The effect of protein-to-alginate ratio on in vitro gastric digestion of nanoparticulated whey protein.International dairy journal. 2018 Feb; 77: 10-18. doi: 10.1016/j.idairyj.2017.09.001
4. Kurchenko V.P., Alieva L. R., Butkevich T. V. & Gavrilenko N. V. [The mechanism of interaction of chitosan with whey proteins]. Proceedings of the Belarusian State University. Series: Physiological, biochemical and molecular bases of functioning of biosystems. 2013, no. 8 (1), pp. 45-51. (in Russ.)@@ Курченко В. П., Алиева Л. Р., Буткевич Т. В., Гавриленко Н. В. Механизм взаимодействия хитозана с белками молочной сыворотки. Труды Белорусского государственного университета. Серия: Физиологические, биохимические и молекулярные основы функционирования биосистем. 2013; Т. 8(1): 45-51.
5. Butterworth P.J., Warren F. J., Ellis P. R. Human α-amylase and starch digestion: An interesting marriage. Starch-Stärke. 2011 Feb 23; 63(7): 395-405. doi: 10.1002/star.201000150.
6. Freitas D., Le Feunteun S., Panouillé M., & Souchon I. The important role of salivary α-amylase in the gastric digestion of wheat bread starch. Food & function. 2018 Sep 25; 9(1): 200-208. doi: 10.1039/C7FO01484H.
7. Freitas D., Le Feunteun S. Oro-gastro-intestinal digestion of starch in white bread, wheat-based and gluten-free pasta: unveiling the contribution of human salivary α-amylase. Food chemistry. 2019 Feb 15; 274: 566-573. doi: 10.1016/j.foodchem.2018.09.025.
8. Ai Y., Hasjim J., Jane J. Effects of lipids on enzymatic hydrolysis and physical properties of starch. Carbohydrate Polymers. 2013 Jan 30; 92(1):120-127. doi: 10.1016/j.carbpol.2012.08.092.
9. Seneviratne H.D., Biliaderis C. G. Action of α-amylases on amylose-lipid complex superstructures. Journal of Cereal Science. 1991 Mar; 13(2): 129-143. doi: 10.1016/S0733-5210(09)80030-1.
10. Godet M.C., Bouchet B., Colonna P. et al. Crystalline amylose-fatty acid complexes: Morphology and crystal thickness. Journal of Food Science. 1996 Nov; 61(6): 1196-1201. doi: 10.1111/j.1365-2621.1996.tb10959.x.
11. Tufvesson F., Eliasson A. C. Formation and crystallization of amylose-monoglyceride complex in a starch matrix. Carbohydrate polymers. 2000 Dec 1; 43(4) 359-365. doi: 10.1016/S0144-8617(00)00179-X.
12. Crowe T.C., Seligman S. A., Copeland L. Inhibition of enzymic digestion of amylose by free fatty acids in vitro contributes to resistant starch formation. The Journal of nutrition. 2000 Aug 1; 130(8): 2006-2008. doi: 10.1093/jn/130.8.2006.
13. Kawai K., Takato S., Sasaki T., & Kajiwara, K.Complex formation, thermal properties, and in-vitro digestibility of gelatinized potato starch-fatty acid mixtures. Food Hydrocolloids. 2012 May; 27(1): 228-234. doi: 10.1016/j.foodhyd.2011.07.003.
14. Guraya H.S., Kadan R. S., Champagne E. T. Effect of rice starch-lipid complexes on in vitro digestibility, complexing index, and viscosity. Cereal Chemistry.1997Sep15;74(5)561-565.doi: 10.1094/CCHEM.1997.74.5. 561.
15. Zhang G., Hamaker B. R. Sorghum (Sorghum bicolor L. Moench) flour pasting properties influenced by free fatty acids and protein. Cereal chemistry. 2005 Sep 15; 82(5): 534-540. doi: 10.1094/CC-82-0534.
16. Zhang G., Maladen M. D., Hamaker B. R. Detection of a novel three component complex consisting of starch, protein, and free fatty acids. Journal of agricultural and food chemistry. 2003 Mar 21; 51(9): 2801-2805. doi: 10.1021/jf030035t.
17. Chao C., Cai J., Yu J. et al. Toward a better understanding of starch-monoglyceride-protein interactions. Journal of agricultural and food chemistry. 2018 Nov 28; 66(50): 13253-13259. doi: 10.1021/acs.jafc.8b04742.
18. Zheng M., Chao C., Yu J. et al. Effects of chain length and degree of unsaturation of fatty acids on structure and in vitro digestibility of starch-protein-fatty acid complexes. Journal of agricultural and food chemistry. 2018 Feb 12; 66(8): 1872-1880. doi: 10.1021/acs.jafc.7b04779.
19. Chen B., Jia X., Miao S. et al. Slowly digestible properties of lotus seed starch-glycerine monostearin complexes formed by high pressure homogenization. Food chemistry. 2018 Jun 30; 252: 115-125. doi: 10.1016/j.foodchem.2018.01.054.
20. Meng S., Ma Y., Cui J., & Sun, D. W. Preparation of corn starch-fatty acid complexes by high-pressure homogenization. Starch-Stärke. 2014 May 8; 66(9-10): 809-817. doi: 10.1002/star.201400022.
21. Gargouri Y., Julien R., Sugihara A. et al. Inhibition of pancreatic and microbial lipases by proteins. Biochim Biophys Acta. 1984 Sep 12;795(2):326-31. doi: 10.1016/0005-2760(84)90082-1.
22. Gargouri Y., Pieroni G., Rivière C. et al. Inhibition of lipases by proteins. A kinetic study with dicaprin monolayers. J Biol Chem. 1985 Feb 25; 260(4): 2268-73. doi: 10.1016/S0021-9258(18)89549-7.
23. Vinarov Z., Petkova Y., Tcholakova S. et al. Effects of emulsifier charge and concentration on pancreatic lipolysis. 1. In the absence of bile salts. Langmuir. 2012 May 2; 28 (21): 8127-8139. doi: 10.1021/la300366m.
24. Hosomi R, Fukunaga K, Nishiyama T, Yoshida M. Effects of porcine hemoglobin on serum lipid content and fecal lipid excretion in rats. J. Med. Food. 2014;17(3):302-9. doi: 10.1089/jmf.2013.2843.
25. Jauricque Ursulla Kongo-Dia-Moukala, Hui Zhang and Irakoze Pierre Claver In Vitro Binding Capacity of Bile Acids by Defatted Corn Protein Hydrolysate Int. J. Mol. Sci. 2011 Feb 2; (12): 1066-1080. doi: 10.3390/ijms12021066
26. Andreeva Yu.V. [The effect of fasting and resumption of feeding on the secretory function of the stomach. Diss…Candidate biol. sci.]. St. Petersburg, 2007, 140 p. (in Russ.)@@ Андреева Ю. В. Влияние голодания и возобновления кормления на секреторную функцию желудка/ Дисс., канд. биол. наук, Санкт-Петербург, 2007; 140 с.
27. Kurzanov A.N. [Method for determining the lipolytic activity of biological fluids]. Lab. case. 1975, no.12, pp.746-747. (in Russ.)@@ Курзанов А. Н. Метод определения липолитической активности биологических жидкостей. Лаб.дело. 1975;12: 746-747.
28. De S., Das S., Girigoswami A. Spectroscopic probing of bile salt-albumin interaction. Colloids and Surfaces B: Biointerfaces. 2007 Jan 15; 54(1): 74-81. doi: 10.1016/j.colsurfb.2006.09.015.
29. Yasujima T., Saito K., Moore R., & Negishi, M. Phenobarbital and insulin reciprocate activation of the nuclear receptor constitutive androstane receptor through the insulin receptor. J Pharmacol Exp Ther. 2016 May;357(2):367-74. doi: 10.1124/jpet.116.232140.
30. Lentle R.G., Janssen P. W.M. Colloidal dynamics and lipid digestive efficiency. The Physical Processes of Digestion. Springer, New York, NY. 2011 03 Jun; 63-90. doi: 10.1007/978-1-4419-9449-3_5.
Review
For citations:
Aleynik V.A., Babich S.M. The concept of enzymatic disintegration of nutrients in the upper gastrointestinal tract. Experimental and Clinical Gastroenterology. 2023;(9):56-67. (In Russ.) https://doi.org/10.31146/1682-8658-ecg-217-9-56-67