Preview

Experimental and Clinical Gastroenterology

Advanced search

Changes in the expression of oxidative stress genes in toxic hepatitis of different etiologies and their correction

https://doi.org/10.31146/1682-8658-ecg-216-8-120-126

Abstract

The study aims to study of changes in transcriptional activity of oxidative stress genes in acute toxic hepatitis. Materials and methods. The study material was white mongrel male rats weighing 180-200 grams. The studied toxicants were: carbon tetrachloride, ethanol, acetaminophen. As hepatoprotectors were introduced: oxymethyluracil, ademethionine and ethylmethylhydroxypyridine succinate. RNA was isolated, which was subjected to reverse transcription. RT-PCR was performed using a real-time PCR system in the presence of SYBR Green. GAPDH was used as a normalized control. The expression of the studied genes was evaluated by PCR analysis using pre-selected primers. Statistical significance was checked using IBM SPSS Statistics software. Results. In comparison of experimental groups, statistically significant differences were found in the level of expression of the CASP7 gene. Transcriptional activity of the CHEK gene (k=11.25; p=0.024). The GCLC gene (k=21.70; p=0.001) reached its minimum value of -3.6 [-3.72; -3.32] in the Mexidol group. The multiplicity of expression of the GSTM1 gene (k=15.54; p=0.004) had the highest value -0.14 [-1.11; 1] in the group that did not receive TCM. The NQO1 gene achieved its statistical significance in a 72-hour experiment (p=0.005). Statistical analysis of the RIPK gene showed significant differences. The expression level of the GSTP1 gene (k=10.39; p=0.034) reached its maximum value in the untreated group of 0.03 [-0.74; 0.48]. Expression of the NFE2L2 gene with acetaminophen administration showed the following results (k=13.64; p=0.009). Glutathione activity (k=10.29; p=0.036) reached its minimum value in the group receiving Mexidol -1.6 [-1.7; -1.29]. The multiplicity of superoxide dismutase expression showed statistical significance (p=0.003). Conclusions. Markers of the clinical course, prognosis and outcomes of toxic hepatitis were found. These data make it possible to determine the severity of the disease at the stage of early molecular response, when active clinical symptoms have not yet developed, which makes it possible to prescribe targeted therapy and adjust treatment tactics.

About the Authors

T. G. Yakupova
Ufa Research Institute of Occupational Health and Human Ecology
Russian Federation


D. O. Karimov
Ufa Research Institute of Occupational Health and Human Ecology
Russian Federation


A. B. Bakirov
Ufa Research Institute of Occupational Health and Human Ecology
Russian Federation


References

1. Opitz C. An endogenous tumour-promoting ligand of the human aryl hydrocarbon receptor. Nature. 2011;478:197-203. doi: 10.1038/nature10491.

2. You M., Arteel G. E. Effect of ethanol on lipid metabolism. Hepatology. 2019;70:237-248. doi: 10.1016/j.jhep.2018.10.037.

3. Ding W. Autophagy reduces acute ethanol-induced hepatotoxicity and steatosis in mice. Gastroenterology. 2010;139:1740-1752. doi: 10.1053/j.gastro.2010.07.041.

4. Tang D., Wang F., Tang J., Mao A., Liao S., Wang Q. Fedde extracts attenuated CCl4-induced acute liver damage in mice through increasing anti-oxidative enzyme activity to improve mitochondrial function. Biomed Pharmacother. 2017;85:763-771. doi: 10.1016/j.biopha.2016.11.097.

5. Navarro V., Senior J. Drug-related hepatotoxicity. The New England Journal of Medicine. 2006;354:731-739. doi: 10.1056/NEJMra052270.

6. Shen B., Chen H., Shen C., Xu P., Li J., Shen G., et al. Hepatoprotective effects of lignans extract from Herpetospermum caudigerum against CCl(4)-induced acute liver injury in mice. Ethnopharmacol. 2015;164:46-52. doi: 10.1016/j.jep.2015.01.044.

7. Khiati S., Baechler S., Factor V., Zhang H., Huang S., Rosa I., et al. Lack of mitochondrial topoisomerase I (TOP1mt) impairs liver regeneration. Proceedings of the National Academy of Sciences. 2015;112:11282-11287. doi: 10.1073/pnas.1511016112.

8. Zhao Y., Wang Z., Feng D., Zhao H., Lin M., Hu Y., et al. P66Shc contributes to liver fibrosis through the regulation of mitochondrial reactive oxygen species. Theranostics. 2019;9:1510-1522. doi: 10.7150/thno.29620.

9. Oleshchuk O., Ivankiv Y., Falfushynska H., Mudra A., Lisnychuk N. Hepatoprotective effect of melatonin in toxic liver injury in rats. Medicina. 2019;55:304. doi: 10.3390/medicina55060304.

10. Wu Y., Chen K., Lin W. C. Effect of Ganoderma tsugae on chronically carbon tetrachloride-intoxicated rats. The American Journal of Chinese Medicine. 2004;32:841-850.

11. Tan Y., Li Y., Zhou F., Guo J., Wang T., Shi Y., et al. Administration of a mixture of triterpenoids from yeyachun and phenolic acids from danshen ameliorates carbon tetrachloride-induced liver fibrosis in mice by the regulation of intestinal flora. Journal of Pharmacological Sciences. 2020;143:165-175. doi: 10.1016/j.jphs.2020.04.007.

12. Buffler M., Becker C., Windisch W., Schümann K. Inflammation neither increases hepatic hepcidin nor affects intestinal (59) Fe-absorption in two murine models of bowel inflammation, hemizygous TNF (ΔARE/+) and homozygous IL-10 (-/-) mice. Journal of Trace Elements in Medicine and Biology. 2015;32:162-167. doi: 10.1016/j.jtemb.2015.07.003.

13. Samuel D., Coilly A. Management of patients with liver diseases on the waiting list for transplantation: a major impact to the success of liver transplantation. BMC Medicine. 2018;16(1):113. doi: 10.1186/s12916-018-1110-y.

14. Harjumäki R., Pridgeon C., Ingelman-Sundberg M. CYP2E1 in alcoholic and non-alcoholic liver injury. Roles of ROS, reactive intermediates and lipid overload.International journal of Molecular Sciences. 2021;22 (15):8221. doi: 10.3390/ijms22158221.

15. Burra P., Zanetto A., Germani G. Liver transplantation for alcoholic liver disease and hepatocellular carcinoma. Cancers. 2018;10(2):46. doi: 10.3390/cancers10020046.

16. Mathurin P., Bataller R. Trends in the management and burden of alcoholic liver disease. Journal of Hepatology. 2015;62(1):38-46. doi: 10.1016/j.jhep.2015.03.006.

17. Taylor S., Miloh T. Adolescent alcoholic liver disease. Clinics in Liver Disease. 2019;23(1):51-54. doi: 10.1016/j.cld.2018.09.003.

18. Leung T., Nieto N. CYP2E1 and oxidant stress in alcoholic and non-alcoholic fatty liver disease. Journal of Hepatology. 2013;58(2):395-398. doi: 10.1016/j.jhep.2012.08.018.

19. Kasper P, Tacke F, Steffen H-M, Michels G. Hepatic dysfunction in sepsis. Med Klin Intensivmed. 2020;115(7): 609-619. doi: 10.1007/s00063-020-00707-x.

20. Repina E. F., Karimov D. O., Timasheva G. V., Bajgildin S. S., Xusnutdinova N. Yu. et al. Correction of liver lesions with oxymethyluracil against the background of the toxic effects of a high dose of carbon tetrachloride. Occupational medicine and human ecology. 2020;3(23): 87-100. (In Russ.)@@ Репина Э. Ф., Каримов Д. О., Тимашева Г. В., Байгильдин С. С., Хуснутдинова Н. Ю. и др. Коррекция повреждений печени оксиметилурацилом на ранних сроках после токсического воздействия высоких доз тетрахлорметана. Медицина труда и экология человека. 2020;3 (23):87-100.


Review

For citations:


Yakupova T.G., Karimov D.O., Bakirov A.B. Changes in the expression of oxidative stress genes in toxic hepatitis of different etiologies and their correction. Experimental and Clinical Gastroenterology. 2023;(8):120-126. (In Russ.) https://doi.org/10.31146/1682-8658-ecg-216-8-120-126

Views: 272


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1682-8658 (Print)