Сигаретный дым и кишечная микробиота - что мы знаем?
https://doi.org/10.31146/1682-8658-ecg-211-3-134-143
Аннотация
Об авторах
Ю. П. УспенскийРоссия
Ю. А. Фоминых
Россия
О. А. Башкина
Россия
К. Н. Наджафова
Россия
Н. А. Иманвердиева
Россия
Список литературы
1. Uspensky Yu.P., Fominykh Yu.A., Nadzhafova K N., Polyushkin SV. Probiotics and their place in the modern world.Russian Journal of Gastroenterology, Hepatology, Coloproctology. 2020;30(3):24-35. (in Russ.) doi: 10.22416/1382-4376-2020-30-3-24-35.@@ Успенский Ю. П., Фоминых Ю. А., Наджафова К. Н., Полюшкин С. В. Пробиотики и их место в современном мире. Российский журнал гастроэнтерологии, гепатологии, колопроктологии. 2020;30(3):24-35. doi: 10.22416/1382-4376-2020-30-3-24-35.
2. Baryshnikova N.V., Fominykh Yu.A., Balukova E. V., UspenskyYu.P.Intestinal dysbiosis - helicobacter pylori infection - irritable bowel syndrome - metabolic syndrome: what unites them? Practical medicine. 2012;3(58):11-16. (in Russ.)@@ Барышникова Н. В., Фоминых Ю. А., Балукова Е. В., Успенский Ю. П. Дисбиоз кишечника - инфекция helicobacter pylori - синдром раздраженного кишечника - метаболический синдром: что их объединяет? Практическая медицина. 2012;3(58):11-16.
3. Fominykh Yu. A.Intestinal microbiota disorders in adults with celiac disease. University therapeutic journal. 2021;3(4):28-39. (in Russ.)@@ Фоминых Ю. А. Нарушение микробиоты кишечника у больных целиакией взрослых. University therapeutic journal. 2021;3(4):28-39.
4. Fominykh Yu.A., Nadzhafova K. N. Practical recommendations for therapists to diagnos and treat microbiota disorders in diseases of the digestive system. University therapeutic journal. 2021; 3(4):155-165. (in Russ.)@@ Фоминых Ю. А., Наджафова К. Н. Практические рекомендации для терапевтов по диагностике и лечению нарушений микробиоты при заболеваниях пищеварительной системы.University therapeutic journal. 2021; 3(4):155-165.
5. Fominykh Yu.A., Nadzhafova K. N., Rodionov G G., et al. Features of bile acid metabolism in patients with cholelithiasis. Experimental and clinical gastroenterology. 2022;198(2): 54-63. (in Russ.) doi: 10.31146/1682-8658-ecg-198-2-54-63.@@ Фоминых Ю. А., Наджафова К. Н., Родионов Г. Г. и соавт. Особенности метаболизма желчных кислот у пациентов с желчнокаменной болезнью. Экспериментальная и клиническая гастроэнтерология. 2022;198(2):54-63. doi: 10.31146/1682-8658-ecg-198-2-54-63.
6. Hufeldt M.R., Nielsen D. S., Vogensen F. K., et al. Variation in the gut microbiota of laboratory mice is related to both genetic and environmental factors.Comp. Med. 2010;60: 336-347.
7. Cho Y., Lim J. H., Song M. K., et al. Toxicogenomic analysis of the pulmonary toxic effects of hexanal in F344 rat. Environ. Toxicol. 2017;32, 382-396. doi: 10.1002/tox.22242.
8. Rom O., Avezov K., Aizenbud D., Reznick A. Z. Cigarette smoking and inflammation revisited. Respir. Physiol. Neurobiol. 2013;187: 5-10. doi: 0.1016/j.resp.2013.01.013.
9. Brusselle G. G., Joos G. F., Bracke K. R. Chronic obstructive pulmonary disease 1 new insights into the immunology of chronic obstructive pulmonary disease. Lancet. 2011;378: 1015-1026. doi: 10.1016/S0140-6736(11) 60988-4.
10. Csordas A., Bernhard D. The biology behind the atherothrombotic effects of cigarette smoke. Nat. Rev. Cardiol. 2013;10:219-230. doi: 10.1038/nrcardio. 2013.8.
11. Huang C., Shi G. Smoking and microbiome in oral, airway, gut and some systemic diseases. J Transl Med. 2019;15:17(1):225. doi: 10.1186/s12967-019-1971-7.
12. Larsson L., Szponar B., Ridha B., et al. Identification of bacterial and fungal components in tobacco and tobacco smoke. TobInducDis. 2008;4:4. doi: 10.1186/1617-9625-4-4.
13. Pauly J. L., Waight J. D., Paszkiewicz G. M. Tobacco flakes on cigarette filters grow bacteria: a potential health risk to the smoker? Tob Control. 2008;17(1):49-52. doi: 10.1136/tc.2007.022772.
14. Sapkota A. R., Berger S., Vogel T. M. Human pathogens abundant in the bacterial metagenome of cigarettes. Environ Health Perspect. 2010;118:351-6. doi: 10.1289/ehp.0901201.
15. Shanahan E. R., Shah A., Koloski N., et al. Influence of cigarette smoking on the human duodenal mucosa-associated microbiota. Microbiome. 2018;6:150. doi: 10.1186/s40168-018-0531-3.
16. Boral M. C. Studies on the erythropoietic effect of plasma from anemic toads both with and without testis. Endokrinologie. 1979;73:243-246.
17. Murthy S. N., Dinoso V. P. Jr, Clearfield H. R., Chey W. Y. Serial pH changes in the duodenal bulb during smoking. Gastroenterology. 1978;75:1-4.
18. Ainsworth M. A., Hogan D. L., Koss M. A., Isenberg J. I. Cigarette smoking inhibits acid-stimulated duodenal mucosal bicarbonate secretion. Ann Intern Med. 1993;119:882-886. doi: 10.7326/0003-4819-119-9-199311010-00003.
19. Tomoda K., Kubo K., Asahara T., et al. Cigarette smoke decreases organic acids levels and population of Bifidobacterium in the caecum of rats. J. Toxicol. Sci. 2011;36:261-266. doi: 10.2131/ jts.36.261.
20. Battey J. N. D., Szostak J., Phillips B., et al. Impact of 6-month exposure to aerosols from potential modified risk tobacco products relative to cigarette smoke on the rodent gastrointestinal tract. Front. Microbiol. 2021.;12:587745. doi: 10.3389/fmicb.2021.587745.
21. Rogers M. A., Greene M. T., Saint S., et al. Higher rates of Clostridium difficile infection among smokers. PLoS ONE. 2012;7: e42091. doi: 10.1371/journal.pone.0042091.
22. Lee S. H., Yun Y., Kim S. J., et al. Association between cigarette smoking status and composition of gut microbiota: population-based cross-sectional study. J. Clin. Med. 2018; 7:282. doi: 10.3390/jcm7090282.
23. Benjamin J. L., Hedin C. R., Koutsoumpas A., et al. Smokers with active Crohn’s disease have a clinically relevant dysbiosis of the gastrointestinal microbiota. InflammBowelDis. 2012;18:1092-1100. doi: 10.1002/ibd.21864.
24. Biedermann L., Zeitz J., Mwinyi J., et al. Smoking cessation induces profound changes in the composition of the intestinal microbiota in humans. PLoS ONE. 2013;8: e59260. doi: 10.1371/journal.pone.0059260.
25. Heaver S. L., Johnson E. L., Ley R. E. Sphingolipids in host-microbial interactions. CurrOpinMicrobiol. 2018;43:92-9. doi: 10.1016/j.mib.2017.12.011.
26. Olsen I., Jantzen E. Sphingolipids in bacteria and fungi. Anaerobe. 2001;7:103-12. doi: 10.1006/anae.2001.0376.
27. Johnson E. L., Heaver S. L., Waters J. L., et al. Sphingolipids produced by gut bacteria enter host metabolic pathways impacting ceramide levels. Nat Commun. 2020;11:2471. doi: 10.1038/s41467-020-16274-w.
28. Brown E. M., Ke X., Hitchcock D., et al. Bacteroides-derived sphingolipids are critical for maintaining intestinal homeostasis and symbiosis. CellHostMicrobe. 2019; 25:668-80. doi: 10.1016/j.chom.2019.04.002.
29. Centers for Disease Control and Prevention. How Tobacco Smoke Causes Disease: The Biology and Behavioral Basis for Smoking-Attributable Disease: A Report of the Surgeon General. Atlanta, 2010. Available from: https://www.ncbi.nlm.nih.gov/books/NBK53017/(accessed 10.04.2023)
30. Roy J., Pallepati P., Bettaieb A., Averill-Bates D. A. Acrolein induces apoptosis through the death receptor pathway in a549 lung cells: role of p53. Can. J. Physiol. Pharmacol. 2010; 88, 353-368. doi: 10.1139/y09-134.
31. Bueno S., Alvarez M., Berkowitz L., et al. Mucosal exposure to cigarette components induces intestinal inflammation and alters antimicrobial response in mice. Front. Immunol. 2019;10:2289. doi: 10.3389/fimmu.2019.02289.
32. Chi L., Bian X., Gao B., et al. The effects of an environmentally relevant level of arsenic on the gut microbiome and its functional metagenome. Toxicol. Sci. 2017; 160, 193-204. doi: 10.1093/toxsci/kfx174.
33. Hu L., Jin L., Xia D., et al. Nitrate ameliorates dextran sodium sulfate-induced colitis by regulating the homeostasis of the intestinal microbiota. Free. Radical. Bio. Med. 2020; 152, 609-621. doi: 10.1016/j.free radbiomed.2019.12.002.
34. Chi L., Mahbub R. M., Gao B., et al. Nicotine alters the gut microbiome and metabolites of gut-brain interactions in a sex-specific manner. Chem. Res. Toxicol. 2017; 30(12): 2110-2119. doi: 10.1021/acs.chemrestox.7b00162.
35. Diggs D. L., Huderson A. C., Harris K. L., et al. Polycyclic aromatic hydrocarbons and digestive tract cancers: a perspective. J. Environ. Sci. Health C. Environ. Carcinog. Ecotoxicol. Rev. 2011; 29, 324-357. doi: 10.1080/10590501.2011 629974.
36. Nogacka A. M., Gomez-Martin M., Suarez, A., et al. Xenobiotics formed during food processing: their relation with the intestinal microbiota and colorectal cancer.Int. J. Mol. Sci. 2019;20:2051. doi: 10.3390/ijms20082051.
37. Van de Wiele, T., Vanhaecke, L., Boeckaert, C., et al. Human colon microbiota transform polycyclic aromatic hydrocarbons to estrogenic metabolites. Environ. Health. Persp. 2005;113:6-10. doi: 10.1289/ehp.725.
38. Ribiere C., Peyret P., Parisot N., et al. Oral exposure to environmental pollutant benzo [a] pyrene impacts the intestinal epithelium and induces gut microbial shifts in murine model. Sci. Rep. 2016; 6:31027. doi: 10.1038/srep31027.
39. Defois C., Ratel J., Denis S., et al. Environmental pollutant benzo[a]pyrene impacts the volatile metabolome and transcriptome of the human gut microbiota. Front. Microbiol. 2017; 8:1562. doi: 10.3389/fmicb.2017.01562.
40. Gui X., Yang Z., Li M. D. Effect of Cigarette Smoke on Gut Microbiota: State of Knowledge. Front. Physiol. 2021; 12:673341. doi: 10.3389/fphys.2021.673341.
41. Pazo D. Y., Moliere F., Sampson M. M., et al. Mainstream smoke levels of volatile organic compounds in 50 U. S. Domestic cigarette brands smoked with the iso and canadian intense protocols. NicotineTob. Res. 2016; 18, 1886-1894. doi: 10.1093/ntr/ ntw118.
42. Bahadar H., Mostafalou S., Abdollahi M. Current understandings and perspectives on non-cancer health effects of benzene: a global concern. Toxicol. Appl. Pharm. 2014; 276, 83-94. doi: 10.1016/j.taap.2014.02.012.
43. Fuchs P., Loeseken C., Schubert J. K., Miekisch W. Breath gas aldehydes as biomarkers of lung cancer.Int. J. Cancer. 2010; 126: 2663-2670. doi: 10.1002/ijc.24970.
44. Colombo G., Aldini G., Orioli M., et al. Water-soluble α, β-unsaturated aldehydes of cigarette smoke induce carbonylation of human serum albumin. Antioxid. Redox. Sign. 2009;12:349-364. doi: 10.1089/ars.2009.2806.
45. Voulgaridou G. P., Anestopoulos I., Franco R., et al. DNA damage induced by endogenous aldehydes: current state of knowledge. Mutat. Res. 2011;711:13-27. doi: 10.1016/j.mrfmmm.2011.03.006.
46. Yoshida M., Mizoi M., Saiki R., et al. Relationship between metabolic disorders and relative risk values of brain infarction estimated by protein-conjugated acrolein, IL-6 and CRP together with age. Clin. Chim. Acta. 2011;412:339-342. doi: 10.1016/j.cca.2010.11.003.
47. Brandsma E., Kloosterhuis N., Dekker D., et al. Gut microbiota dysbiosis augments atherosclerosis in ldlr-/- mice. Atherosclerosis. 2017;263: e97. doi: 10.1016/j.atherosclerosis.2017.06.316.
48. Chen W. Y., Wang M., Zhang J., et al. Acrolein disrupts tight junction proteins and causes endoplasmic reticulum stress-mediated epithelial cell death leading to intestinal barrier dysfunction and permeability. Am. J. Pathol. 2017;187:2686-2697. doi: 10.1016/j.Ajpath.2017.08.015.
49. Engels C., Schwab C., Zhang J., et al. Acrolein contributes strongly to antimicrobial and heterocyclic amine transformation activities of reuterin. Sci. Rep. 2016; 6:36246. doi: 10.1038/srep36246.
50. Rom O., Korach-Rechtman H., Hayek T., et al. Acrolein increases macrophage atherogenicity in association with gut microbiota remodeling in atherosclerotic mice: protective role for the polyphenol-rich pomegranate juice. Arch. Toxicol. 2017; 91: 1709-1725. doi: 10.1007/ s00204-016-1859-8.
51. Vollenweider S., Evers S., Zurbriggen K., Lacroix C. Unraveling the hydroxypropionaldehyde (HPA) system: an active antimicrobial agent against human pathogens. J. Agr. Food Chem. 2010; 58: 10315-10322. doi: 10.1021/jf1010897.
52. Lambert C., McCue J., Portas M., et al. Acrolein in cigarette smoke inhibits T-cell responses. J. Allergy. Clin. Immun. 2005; 116, 916-922. doi: 10.1016/j.jaci.2005 05.046.
53. Stevens J. F., Maier C. S. Acrolein: sources, metabolism, and biomolecular interactions relevant to human health and disease. Mol. Nutr. Food. Res. 2008;52:7-25. doi: 10.1002/mnfr.200700412.
54. Takeuchi K., Kato M., Suzuki H., et al. Acrolein induces activation of the epidermal growth factor receptor of human keratinocytes for cell death. J. Cell. Biochem. 2001;81:679-688. doi: 10.1002/jcb.1105.
55. Salaspuro M. Acetaldehyde, microbes, and cancer of the digestive tract. Crit. Rev. Clin. Lab. Sci. 2003;40:183-208. doi: 10.1080/713609333.
56. Elamin E. E., Masclee A. A., Dekker J., Jonkers, D. M. Ethanol metabolism and its effects on the intestinal epithelial barrier. Nutr. Rev. 2013;71:483-499. doi: 10.1111/nure.12027.
57. Ceni E., Mello T., Galli A. Pathogenesis of alcoholic liver disease: role of oxidative metabolism. World. J. Gastroenterol. 2014;20:17756-17772. doi: 0.3748/wjg.v20.i47.17756.
58. Starling S.Interfering with intestinal inflammation. Nat. Rev. Immunol. 2017;17:594-594. doi: 10.1038/nri.2017.113.
59. Ortiz A., Grando, S. A. Smoking and the skin.Int. J. Dermatol. 2012;51:250-262. doi: 10.1111/j.1365-4632.2011.05205.x.
60. Guais A., Brand G., Jacquot L., et al. Toxicity of carbon dioxide: a review. Chem. Res. Toxicol. 2011;24: 2061-2070. doi: 10.1021/tx200220r.
61. Takagi T., Uchiyama K., Naito Y. The therapeutic potential of carbon monoxide for inflammatory bowel disease. Digestion. 2015;91:13-18. doi: 10.1159/000368765.
62. Onyiah J. C., Sheikh S. Z., Maharshak N., et al. Carbon monoxide and heme oxygenase-1 prevent intestinal inflammation in mice by promoting bacterial clearance. Gastroenterology. 2013;144:789-798. doi: 10.1053/j.gastro.2012.12.025.
63. Olson K. R. The therapeutic potential of hydrogen sulfide: separating hype from hope. Am. J. PhysiolRegul.Integr.Comp. Physiol. 2011;301: R297-R312. doi: 10.1152/ajpregu.00045 2011.
64. Cui J., Wu F., Yang X., et al. Effect of exposure to gaseous hydrogen sulphide on cecal microbial diversity of weaning pigs. Vet. Med. Sci. 2020;00:1-9. doi: 10.1002/vms3.309.
65. Chiba M., Masironi R. Toxic and trace elements in tobacco and tobacco smoke. BullWorldHealthOrgan. 1992;70: 269-275.
66. Breton J., Le Clere K., Daniel C., et al. Chronic ingestion of cadmium and lead alters the bioavailability of essential and heavy metals, gene expression pathways and genotoxicity in mouse intestine. Arch. Toxicol. 2013;87:1787-1795. doi: 10.1007/s00204-013-1032-6.
67. Jin Y., Wu S., Zeng Z., Fu Z. Effects of environmental pollutants on gut microbiota. Environ. Pollut. 2017; 222:1-9. doi: 10.1016/j.envpol.2016.11.045.
68. Wu J., Wen X. W., Faulk C., et al. Perinatal lead exposure alters gut microbiota composition and results in sex-specific bodyweight increases in adult mice. Toxicol. Sci. 2016; 151:324-333. doi: 10.1093/toxsci/et al. kfw046.
69. Guo X., Liu S., Wang Z., et al. Metagenomic profiles and antibiotic resistance genes in gut microbiota of mice exposed to arsenic and iron. Chemosphere. 2014;112:1-8. doi: 10.1016/j.chemosphere.2014.03.068.
70. Kinoshita H., Sohma Y., Ohtake F., et al. Biosorption of heavy metals by lactic acid bacteria and identification of mercury binding protein. Res. Microbiol. 2013;164:701-709. doi: 10.1016/j.resmic. 2013.04.004.
71. Bentley M. C., Almstetter M., Arndt D., et al.Comprehensive chemical characterization of the aerosol generated by a heated tobacco product by untargeted screening. Anal Bioanal Chem. 2020;412(11):2675-2685. doi: 10.1007/s00216-020-02502-1.
72. Parkes G. C., Whelan K., Lindsay J. O. Smoking in inflammatory bowel disease: impact on disease course and insights into the etiology of its effect. J CrohnsColitis. 2014;8:717-725. doi: 10.1016/j.crohns.2014.02.002.
73. Opstelten J. L., Plassais J., van Mil SW, et al. Gut microbial diversity is reduced in smokers with Crohn’s disease. InflammBowelDis. 2016;22:2070-2077. doi: 10.1097/MIB.0000000000000875.
74. Sokol H., Pigneur B., Watterlot L., et al. Faecalibacterium prausnitzii is an anti-inflammatory commensal bacterium identified by gut microbiota analysis of Crohn disease patients. ProcNatlAcadSci USA. 2008;105:16731-16736. doi: 10.1073/pnas.0804812105.
75. de Souza H. S., Fiocchi C. Immunopathogenesis of IBD: current state of the art. NatRevGastroenterolHepatol. 2016;13:13-27. doi: 10.1038/nrgastro.2015.186.
76. Tozer P. J., Rayment N., Hart A. L., et al. Phillips What role do bacteria play in persisting fistula formation in idiopathic and Crohn’s anal fistula. RK. ColorectalDis. 2015;17(3):235-41. doi: 10.1111/codi.12810.
77. Rogler G., Vavricka S. Exposome in IBD: recent insights in environmental factors that influence the onset and course of IBD. InflammBowelDis. 2015;21:400-408. doi: 10.1097/MIB.0000000000000229.
78. Zhai H., Huang W., Liu A., et al. Current smoking improves ulcerative colitis patients’ disease behaviour in the northwest of China. PrzGastroenterol. 2017;12:286-290. doi: 10.1007/s11377-017-0174-0.
79. Wang Y. F., Ou-Yang Q., Xia B., et al. Multicenter case-control study of the risk factors for ulcerative colitis in China. World J Gastroenterol. 2013;19:1827-1833. doi: 10.3748/wjg.v19.i11.1827.
80. Ng S. C., Tang W., Leong R. W., et al. Environmental risk factors in inflammatory bowel disease: a population-based case-control study in Asia-Pacific. Gut. 2015;64:1063-1071. doi: 10.1136/gutjnl-2014-307410.
81. Li L. F., Chan R. L., Lu L., et al. Cigarette smoking and gastrointestinal diseases: the causal relationship and underlying molecular mechanisms (review).Int J Mol Med. 2014;34:372-380. doi: 10.3892/ijmm.2014.1786.
82. Altarescu G., Rachmilewitz D., Zevin S. Relationship between CYP2A6 genetic polymorphism, as a marker of nicotine metabolism, and ulcerative colitis. Isr Med Assoc J. 2011;13:87-90.
83. Onyiah J. C., Sheikh S. Z., Maharshak N., et al. Heme oxygenase-1 and carbon monoxide regulate intestinal homeostasis and mucosal immune responses to the enteric microbiota. GutMicrobes. 2014;5:220-224. doi: 10.4161/gmic.27290.
84. Dallongeville J., Marecaux N., Fruchart J. C., Amouyel P. Cigarette smoking is associated with unhealthy patterns of nutrient intake: a meta-analysis. J Nutr. 1998;128:1450-1457. doi: 10.1093/jn/128.9.1450.
85. Rogler G. Chronic ulcerative colitis and colorectal cancer. Cancer Lett. 2014;345:235-241. doi: 10.1016/j.canlet.2013.07.032.
86. Hanahan D., Weinberg R. A. Hallmarks of cancer: the next generation. Cell. 2011;144:646-674. doi: 10.1016/j.cell.2011.02.013.
87. Saus E., Iraola-Guzman S., Willis J. R., et al. Microbiome and colorectal cancer: Roles in carcinogenesis and clinical potential. Mol Aspects Med. 2019;69:93-106. doi: 10.1016/j.mam.2019.05.001.
88. Hoppes W. L., Lerner P. I. Nonenterococcal group-D streptococcal endocarditis caused by Streptococcus bovis. Ann Intern Med. 1974;81:588-593. doi: 10.7326/0003-4819-81-5-588.
89. Wang T., Cai G., Qiu Y., et al. Structural segregation of gut microbiota between colorectal cancer patients and healthy volunteers. ISME J. 2012;6:320-329. doi: 10.1038/ismej.2011.109.
90. Feng Q., Liang S., Jia H., et al. Gut microbiome development along the colorectal adenoma-carcinoma sequence. NatCommun. 2015;6:6528. doi: 10.1038/ncomms7528.
91. Yu J., Feng Q., Wong S. H., et al. Metagenomic analysis of faecal microbiome as a tool towards targeted non-invasive biomarkers for colorectal cancer. Gut. 2017;66:70-78. doi: 10.1136/gutjnl-2015-309800.
92. Gao Z., Guo B., Gao R., et al. Microbiota disbiosis is associated with colorectal cancer. FrontMicrobiol. 2015;6:20. doi:10.3389/fmicb.2015.00020.
93. Nakatsu G., Zhou H., Wu W. K.K, et al. Alterations in enteric virome are associated with colorectal cancer and survival outcomes. Gastroenterology. 2018;155:529-541. doi: 10.1053/j.gastro.2018.04.018.
94. Coker O. O., Nakatsu G., Dai R. Z., et al. Enteric fungal microbiota dysbiosis and ecological alterations in colorectal cancer. Gut. 2019;68:654-662. doi: 10.1136/gutjnl-2018-317178.
95. Hu J., Wei T., Sun S., et al. Effects of cigarette smoke condensate on the production and characterization of exopolysaccharides by Bifidobacterium. AnAcadBrasCienc. 2015;87:997-1005. doi: 10.1590/0001-3765201520140518.
96. Kurata N., Tokashiki N., Fukushima K., et al. Short chain fatty acid butyrate uptake reduces expressions of prostanoid EP4 receptors and their mediation of cyclooxygenase-2 induction in HCA-7 human colon cancer cells. Eur J Pharmacol. 2019;853:308-315. doi: 10.1016/j.ejphar.2019.04.014.
97. Allais L., Kerckhof F. M., Verschuere S., et al. Chronic cigarette smoke exposure induces microbial and inflammatory shifts and mucin changes in the murine gut. EnvironMicrobiol. 2016;18:1352-1363. doi: 10.1111/ 1462-2920.12934.
Рецензия
Для цитирования:
Успенский Ю.П., Фоминых Ю.А., Башкина О.А., Наджафова К.Н., Иманвердиева Н.А. Сигаретный дым и кишечная микробиота - что мы знаем? Экспериментальная и клиническая гастроэнтерология. 2023;(3):134-143. https://doi.org/10.31146/1682-8658-ecg-211-3-134-143
For citation:
Uspensky Yu.P., Fominykh Yu.A., Bashkina O.A., Nadzhafova K.N., Imanverdieva N.A. Cigarette smoke and intestinal microbiota - what do we know? Experimental and Clinical Gastroenterology. 2023;(3):134-143. (In Russ.) https://doi.org/10.31146/1682-8658-ecg-211-3-134-143