Preview

Experimental and Clinical Gastroenterology

Advanced search

The role of perlecan in remodeling the extracellular matrix of the liver, lungs and spleen of mice after administration of BCG vaccine and the liposome-encapsulated dextrazide

https://doi.org/10.31146/1682-8658-ecg-207-11-204-210

Abstract

Despite significant advances in the diagnosis of tuberculosis, the issues of the mechanism of development and treatment of fibrotic manifestations are relevant and take place in the treatment. The aim of the study was to study the content of perlecane and to find out its participation in the remodeling of the extracellular matrix of the organs of mice with tuberculous inflammation and when they were injected with an antitubercular composition. Materials and methods. The experiment was carried out on male mice of the BALB/c line, which were divided into 4 groups of 5 individuals each. All animals, with the exception of intact mice (group 1), were retroorbitally injected with BCG vaccine once (0.5 mg of microbial bodies in 0.2 ml of 0.9% NaCl solution) to simulate a generalized tuberculosis process. After infection 6 mo for 3 mo, group 2 mice were intraperitoneally injected with 50 µl of 0.9% NaCl solution, group 3 - intraperitoneally with 50 µl of liposome-encapsulated dextrazide solution (LEDZ, isoniazid conjugate and oxidized dextran enclosed in liposomes), group 4 - LEDZ solution was inhaled by spraying in the chamber through a nebulizer for 5 min at the rate of 50 µl of solution per animal. After the last administration of the NaCl and LEDZ solution, mice were removed from the experiment, organs were taken, and tissue homogenates were prepared. The content of perlecane, hyaluronan, protein-bound hydroxyproline, tissue metalloproteinase inhibitors (TIMP-1, TIMP-2) and the activity of matrix metalloproteinases (MMP), hyaluronidases, α2-macroglobulin were measured. Results. In all organs of infected mice, the content of perlecan, hyaluronan, protein-bound hydroxyproline, TIMP-1, TIMP-2 was increased, MMP, hyaluronidase, α2-macroglobulin were activated. Regardless of the method of administration of LEDZ, the severity of fibrosis decreased due to a decrease in the content of hyaluronan in all organs and protein-bound hydroxyproline in the lungs. Perlecan with intraperitoneal administration is involved in fibrosis of the spleen, inhalation - reflects the severity of liver fibrosis. Conclusion. Correlations of perlecan with extracellular matrix components reflect participation in the regulation of fibrosis of organs in BCG-induced inflammation.

About the Authors

L. B. Kim
Federal Research Center of Fundamental and Translational Medicine
Russian Federation


A. N. Putyatina
Federal Research Center of Fundamental and Translational Medicine
Russian Federation


G. S. Russkikh
Federal Research Center of Fundamental and Translational Medicine
Russian Federation


References

1. Global tuberculosis report 2020. Geneva: World Health Organization; 2020.

2. Shkurupiy V. A., Kim L. B., Potapova O. V., et al. Fibrogenesis in granulomas and lung interstitium in tuberculous inflammation in mice. Bull. Exp. Biol. Med. 2014;156(6):731-5. doi: 10.1007/s10517-014-2435-y.

3. Lord M. S., Tang F., Rnjak-Kovacina J., et al. The multifaceted roles of perlecan in fibrosis. Matrix Biol. 2018;68-69:150-66. doi: 10.1016/j.matbio.2018.02.013.

4. Karsdal M. A., Nielsen S. H., Leeming D. J., et al. The good and the bad collagens of fibrosis - Their role in signaling and organ function. Adv. Drug Deliv. Rev. 2017;121:43-56. doi: 10.1016/j.addr.2017.07.014.

5. Karsdal M. A., Daniels S. J., Holm Nielsen S., et al. Collagen biology and non-invasive biomarkers of liver fibrosis. Liver Int. 2020;40(4):736-50. doi: 10.1111/liv.14390.

6. Giannandrea M., Parks W. C. Diverse functions of matrix metalloproteinases during fibrosis. Dis. Model Mech. 2014;7(2):193-203. doi: 10.1242/dmm.012062.

7. Iozzo R. V., Schaefer L. Proteoglycan form and function: a comprehensive nomenclature of proteoglycans. Matrix Biol. 2015;42:11-55. doi: 10.1016/j.matbio.2015.02.003.

8. Farach-Carson M.C., Warren C. R., Harrington D. A., Carson D. D. Border patrol: insights into the unique role of perlecan/heparan sulfate proteoglycan 2 at cell and tissue. Matrix Biol. 2014;34:64-79. doi:10.1016/j.matbio.2013.08.004.

9. McCarthy K. J. The basement membrane proteoglycans perlecan and agrin: something old, something new. Curr. Top Membr. 2015;76:255-303. doi: 10.1016/bs.ctm.2015.09.001.

10. Arikawa-Hirasawa E. Role of perlecan in development and diseases. Adv. Dev. Biol. 2005;15:65-80. doi: 10.1016/S1574-3349(05)15002-9.

11. Melrose J. Perlecan, a modular instructive proteoglycan with diverse functional properties.Int. J. Biochem. Cell Biol. 2020;128:105849. doi: 10.1016/j.biocel.2020.105849.

12. Kim L. B., Putyatina A. N., Russkikh G. S., Shkurupy V. A. Antifibrotics effect of liposome-encapsulated composition of oxidized dextran and isonicotinic acid hydrazide in mice with BCG-induced granulomatosis depends on administration route. Bull. Exp. Biol. Med. 2020;169(1):71-6. doi: 10.1007/s10517-020-04827-4.

13. Kim L. B., Putyatina A. N., Russkikh G. S., Shkurupy V. A. Specific parameters of extracellular matrix remodeling of liver and lungs of mice with BCG granulomatosis during chronic inflammation depending on the method of administration of liposomal oxidized dextran. Tuberculosis and Lung Diseases. 2021;99(8):40-6. (In Russ.) doi: 10.21292/2075-1230-2021-99-8-40-46.@@ Ким Л. Б., Путятина А. Н., Русских Г. С., Шкурупий В. А. Особенности ремоделирования внеклеточного матрикса печени и лёгких мышей с БЦЖ-гранулематозом в периоде хронического воспаления в зависимости от способа введения липосомальной формы декстразида // Туберкулёз и болезни лёгких. - 2021. - Т. 99, № 8. - С. 40-6.

14. Shkurupii V. A., Kim L. B., Potapova O. V. et al. Study of fibrotic complications and hydroxyproline content in mouse liver at different stages of generalized BCG-induced granulomatosis. Bull. Exp. Biol. Med. 2014;157(4):466-9. doi: 10.1007/s10517-014-2592-z.

15. Kim L. B., Putyatina A. N., Russkikh G. S., Shkurupy V. A. Peculiarities of collagen turnover in aging BALB/c mice. Bull. Exp. Biol. Med. 2020;169(1):100-3. doi: 10.1007/s10517-020-04833-6.

16. Miller J. D., Stevens E. T., Smith D. R., et al. Perlecan: a major IL-2-binding proteoglycan in murine spleen. Immunol. Cell Biol. 2008;86(2):192-9. doi: 10.1038/sj.icb.7100128.

17. Asplund A., Stillemark-Billton P., Larsson E., et al. Hypoxic regulation of secreted proteoglycans in macrophages. Glycobiology. 2010;20(1):33-40. doi: 10.1093/glycob/cwp139.

18. Scotton C. J., Chambers R. C. Molecular targets in pulmonary fibrosis: the myofibroblast in focus. Chest. 2007;132(4):1311-21. doi: 10.1378/chest.06-2568.

19. Hinz B. The myofibroblast: paradigm for a mechanically active cell. J. Biomech. 2010;43(1):146-55. doi: 10.1016/j.jbiomech.2009.09.020.

20. Albeiroti S., Soroosh A., de la Motte C. A. Hyaluronan’s role in fibrosis: a pathogenic factor or a passive player? Biomed. Res.Int. 2015;2015:790203. doi: 10.1155/2015/790203.


Review

For citations:


Kim L.B., Putyatina A.N., Russkikh G.S. The role of perlecan in remodeling the extracellular matrix of the liver, lungs and spleen of mice after administration of BCG vaccine and the liposome-encapsulated dextrazide. Experimental and Clinical Gastroenterology. 2022;(11):204-210. (In Russ.) https://doi.org/10.31146/1682-8658-ecg-207-11-204-210

Views: 247


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1682-8658 (Print)