Features of assessing the intestinal barrier permeability in chronic kidney disease
https://doi.org/10.31146/1682-8658-ecg-207-11-46-59
Abstract
About the Authors
M. O. PyatchenkovRussian Federation
A. A. Vlasov
Russian Federation
E. V. Sherbakov
Russian Federation
A. N. Belskykh
Russian Federation
E. V. Kryukov
Russian Federation
A. G. Markov
Russian Federation
References
1. Kidney Disease: Improving Global Outcomes CKD Work Group. KDIGO 2012 clinical practice guideline for the evaluation and management of chronic kidney disease. Kidney Int Suppl. 2013;3:1-150.
2. Jager K., Kovesdy C., Langham R. et al. A single number for advocacy and communication-worldwide more than 850 million individuals have kidney diseases. Nephrology, dialysis, transplantation. 2019;34(11):1803-1805. doi: 10.1093/ndt/gfz174.
3. GBD Chronic Kidney Disease Collaboration. Global, regional, and national burden of chronic kidney disease, 1990-2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet. 2020;395(10225):709-733. doi: 10.1016/S0140-6736(20)30045-3.
4. Xie Y., Bowe B., Mokdad A. H. et al. Analysis of the Global Burden of Disease study highlights the global, regional, and national trends of chronic kidney disease epidemiology from 1990 to 2016. Kidney international. 2018;94(3):567-581. doi: 10.1016/j.kint.2018.04.011.
5. Clinical recommendations. Chronic kidney disease (CKD). Nephrology (Saint-Petersburg). 2021;25(5):10-82. (In Russ.).@@ Клинические рекомендации. Хроническая болезнь почек (ХБП). Нефрология. 2021;25(5):10-82.
6. Thomas R., Kanso A., Sedor J. Chronic kidney disease and its complications. Prim Care. 2008;35(2):329-vii. doi: 10.1016/j.pop.2008.01.008.
7. Vaziri N., Zhao Y., Pahl M. Altered intestinal microbial flora and impaired epithelial barrier structure and function in CKD: the nature, mechanisms, consequences and potential treatment. Nephrology, dialysis, transplantation. 2016;31(5):737-746. doi: 10.1093/ndt/gfv095.
8. Thoo L., Noti M., Krebs P. Keep calm: the intestinal barrier at the interface of peace and war. Cell Death Dis. 2019;10(11):849. doi: 10.1038/s41419-019-2086-z.
9. Yang S., Yu M. Role of Goblet Cells in Intestinal Barrier and Mucosal Immunity. J Inflamm Res. 2021;14:3171-3183. doi: 10.2147/JIR.S318327.
10. Okumura R., Takeda K. Roles of intestinal epithelial cells in the maintenance of gut homeostasis. Exp Mol Med. 2017;49(5): e338. doi: 10.1038/emm.2017.20.
11. Markov A., Aschenbach J., Amasheh S. The epithelial barrier and beyond: claudins as amplifiers of physiological organ functions. IUBMB Life. 2017;69(5):290-296. doi: 10.1002/iub.1622.
12. Groschwitz K., Hogan S.Intestinal barrier function: molecular regulation and disease pathogenesis. J Allergy Clin Immunol. 2009;124(1):3-22. doi: 10.1016/j.jaci.2009.05.038.
13. Sakhon O., Ross B., Gusti V. et al. M cell-derived vesicles suggest a unique pathway for trans-epithelial antigen delivery. Tissue Barriers. 2015;3(1-2): e1004975. doi: 10.1080/21688370.2015.1004975.
14. Takiishi T., Fenero C., Câmara N.Intestinal barrier and gut microbiota: Shaping our immune responses throughout life. Tissue Barriers. 2017;5(4): e1373208. doi: 10.1080/21688370.2017.1373208.
15. Bischoff S., Barbara G., Buurman W. et al.Intestinal permeability-a new target for disease prevention and therapy. BMC Gastroenterol. 2014;14:189. doi: 10.1186/s12876-014-0189-7.
16. Hollander D., Kaunitz J. The “Leaky Gut”: Tight Junctions but Loose Associations? Dig Dis Sci. 2020;65(5):1277-1287. doi: 10.1007/s10620-019-05777-2.
17. Garcia-Hernandez V., Quiros M., Nusrat A.Intestinal epithelial claudins: expression and regulation in homeostasis and inflammation. Ann N Y Acad Sci. 2017;1397(1):66-79. doi: 10.1111/nyas.13360.
18. Fihn B., Sjöqvist A., Jodal M. Permeability of the rat small intestinal epithelium along the villus-crypt axis: effects of glucose transport. Gastroenterology. 2000;119(4):1029-1036. doi: 10.1053/gast.2000.18148.
19. Markov A., Veshnyakova A., Fromm M. et al. Segmental expression of claudin proteins correlates with tight junction barrier properties in rat intestine. J Comp Physiol B. 2010;180(4):591-598. doi: 10.1007/s00360-009-0440-7.
20. Camilleri M. Leaky gut: mechanisms, measurement and clinical implications in humans. Gut. 2019;68(8):1516-1526. doi: 10.1136/gutjnl-2019-318427.
21. Simanenkov V., Maev I., Tkacheva O. et al. Syndrome of increased epithelial permeability in clinical practice. Multidisciplinary National Consensus. Cardiovascular Therapy and Prevention. 2021;20(1):2758. doi: 10.15829/1728-8800-2021-2758.
22. Grootjans J., Thuijls G., Verdam F. et al. Non-invasive assessment of barrier integrity and function of the human gut. World J Gastrointest Surg. 2010;2(3):61-69. doi: 10.4240/wjgs.v2.i3.61.
23. Boirivant M., Amendola A., Butera A. et al. A transient breach in the epithelial barrier leads to regulatory T-cell generation and resistance to experimental colitis. Gastroenterology. 2008;135(5):1612-1623.e5. doi: 10.1053/j.gastro.2008.07.028.
24. Galipeau H., Verdu E. The complex task of measuring intestinal permeability in basic and clinical science. Neurogastroenterol Motil. 2016;28(7):957-965. doi: 10.1111/nmo.12871.
25. Pyatchenkov M., Markov A., Rumyantsev A. Structural and functional intestinal barrier abnormalities and chronic kidney disease. Literature review. Part I. Nephrology (Saint-Petersburg). 2022;26(1):10-26. (In Russ.) doi: 10.36485/1561-6274-2022-26-1-10-26@@ Пятченков М., Марков А., Румянцев А. Структурно-функциональные нарушения кишечного барьера и хроническая болезнь почек. Обзор литературы. Часть I. Нефрология 2022;26(1):10-26. doi: 10.36485/1561-6274-2022-26-1-10-26.
26. Ussing H., Zerahn K. Active transport of sodium as the source of electric current in the short-circuited isolated frog skin. Acta Physiol Scand. 1951;23(2-3):110-127. doi: 10.1111/j.1748-1716.1951.tb00800.x.
27. Skou J. Nobel Lecture. The identification of the sodium pump. Bio sci Rep. 1998;18(4):155-169. doi: 10.1023/a:1020196612909.
28. Riordan J., Rommens J., Kerem B. et al. Identification of the cystic fibrosis gene: cloning and characterization of complementary DNA. Science. 1989;245(4922):1066-1073. doi: 10.1126/science.2475911.
29. Thomson A., Smart K., Somerville M. et al. The Using chamber system for measuring intestinal permeability in health and disease. BMC Gastroenterol. 2019;19(1):98. doi: 10.1186/s12876-019-1002-4.
30. Balimane P., Chong S. Cell culture-based models for intestinal permeability: a critique. Drug Discov Today. 2005;10(5):335-343. doi: 10.1016/S1359-6446(04)03354-9.
31. Schoultz I., Keita A. The Intestinal Barrier and Current Techniques for the Assessment of Gut Permeability. Cells. 2020;9(8):1909. doi: 10.3390/cells9081909.
32. Lozoya-Agullo I., Araújo F., González-Álvarez I. et al.Usefulness of Caco-2/HT29-MTX and Caco-2/HT29-MTX/Raji B Coculture Models To Predict Intestinal and Colonic Permeability Compared to Caco-2 Monoculture. Mol Pharm. 2017;14(4):1264-1270. doi: 10.1021/acs.molpharmaceut.6b01165.
33. Nakamura T. Recent progress in organoid culture to model intestinal epithelial barrier functions.Int Immunol. 2019;31(1):13-21. doi: 10.1093/intimm/dxy065.
34. Stappaerts J., Brouwers J., Annaert P., Augustijns P. In situ perfusion in rodents to explore intestinal drug absorption: challenges and opportunities.Int J Pharm. 2015;478(2):665-681. doi: 10.1016/j.ijpharm.2014.11.035.
35. Farquhar M., Palade G. Junctional complexes in various epithelia. J Cell Biol. 1963;17(2):375-412. doi: 10.1083/jcb.17.2.375.
36. Herrmann J., Turner J. Beyond Ussing’s chambers: contemporary thoughts on integration of transepithelial transport. Am J Physiol Cell Physiol. 2016;310(6): C423-C431. doi: 10.1152/ajpcell.00348.2015.
37. Furuse M., Fujita K., Hiiragi T. et al. Claudin-1 and -2: novel integral membrane proteins localizing at tight junctions with no sequence similarity to occludin. J Cell Biol. 1998;141(7):1539-1550. doi: 10.1083/jcb.141.7.1539.
38. Wang W., Uzzau S., Goldblum S., Fasano A. Human zonulin, a potential modulator of intestinal tight junctions. J Cell Sci. 2000;113 Pt 24:4435-4440. doi: 10.1242/jcs.113.24.4435.
39. Goldstein D., Horowitz R., Petit S. et al. The duodenal mucosa in patients with renal failure: response to 1,25(OH)2D3. Kidney Int. 1981;19(2):324-331. doi: 10.1038/ki.1981.23.
40. Vaziri N., Dure-Smith B., Miller R., Mirahmadi M. Pathology of gastrointestinal tract in chronic hemodialysis patients: an autopsy study of 78 cases. Am J Gastroenterol. 1985;80(8):608-611.
41. Magnusson M., Magnusson K., Sundqvist T., Denneberg T. Increased intestinal permeability to differently sized polyethylene glycols in uremic rats: effects of low- and high-protein diets. Nephron. 1990;56(3):306-311. doi: 10.1159/000186158.
42. Magnusson M., Magnusson K., Sundqvist T., Denneberg T. Impaired intestinal barrier function measured by differently sized polyethylene glycols in patients with chronic renal failure. Gut. 1991;32(7):754-759. doi: 10.1136/gut.32.7.754.
43. Vaziri N., Yuan J., Rahimi A. et al. Subramanian VS. Disintegration of colonic epithelial tight junction in uremia: a likely cause of CKD-associated inflammation. Nephrol Dial Transplant. 2012;27(7):2686-2693. doi: 10.1093/ndt/gfr624.
44. Vaziri N., Yuan J., Nazertehrani S. et al. Chronic kidney disease causes disruption of gastric and small intestinal epithelial tight junction. Am J Nephrol. 2013;38(2):99-103. doi: 10.1159/000353764.
45. Gonzalez A., Krieg R., Massey H. et al. Sodium butyrate ameliorates insulin resistance and renal failure in CKD rats by modulating intestinal permeability and mucin expression. Nephrol Dial Transplant. 2019;34(5):783-794. doi: 10.1093/ndt/gfy238.
46. Vaziri N., Goshtasbi N., Yuan J. et al. Uremic plasma impairs barrier function and depletes the tight junction protein constituents of intestinal epithelium. Am J Nephrol. 2012;36(5):438-443. doi: 10.1159/000343886.
47. Vaziri N., Yuan J., Norris K. Role of urea in intestinal barrier dysfunction and disruption of epithelial tight junction in chronic kidney disease. Am J Nephrol. 2013;37(1):1-6. doi: 10.1159/000345969.
48. Fordtran J., Rector F., Locklear T., Ewton M. Water and solute movement in the small intestine of patients with sprue. J Clin Invest. 1967;46:287-298.
49. Menzies I. Absorption of intact oligosaccharide in health and disease. Biochem Soc Trans. 1974;2:1040-1046.
50. van Nieuwenhoven M., de Swart E., van Eijk H. et al. Effects of pre-and post-absorptive factors on the lactulose/rhamnose gut permeability test. Clin Sci (Lond). 2000;98(3):349-353. doi: 10.1042/cs19990274.
51. Hallemeesch M., Lamers W., Soeters P., Deutz N. Increased lactulose/rhamnose ratio during fluid load is caused by increased urinary lactulose excretion. Am J Physiol Gastrointest Liver Physiol. 2000;278(1): G83-88. doi: 10.1152/ajpgi.2000.278.1.G83.
52. Wong J., Lenaerts K., Meesters D. et al. Acute haemodynamic changes during haemodialysis do not exacerbate gut hyperpermeability. Biosci Rep. 2019;39(4): BSR20181704. doi: 10.1042/BSR20181704.
53. Terpstra M., Singh R., Geerlings S., Bemelman F. Measurement of the intestinal permeability in chronic kidney disease. World J Nephrol. 2016;5(4):378-388. doi: 10.5527/wjn.v5.i4.378.
54. Shi K., Wang F., Jiang H. et al. Gut bacterial translocation may aggravate microinflammation in hemodialysis patients. Dig Dis Sci. 2014;59(9):2109-2117. doi: 10.1007/s10620-014-3202-7.
55. Bossola M., Sanguinetti M., Scribano D. et al. Circulating bacterial-derived DNA fragments and markers of inflammation in chronic hemodialysis patients. Clin J Am Soc Nephrol. 2009;4(2):379-385. doi: 10.2215/CJN.03490708.
56. Kim S., Song I. The clinical impact of gut microbiota in chronic kidney disease. Korean J Intern Med. 2020;35(6):1305-1316. doi: 10.3904/kjim.2020.411.
57. Peck B., Sincavage J., Feinstein S. et al. miR-30 Family Controls Proliferation and Differentiation of Intestinal Epithelial Cell Models by Directing a Broad Gene Expression Program That Includes SOX9 and the Ubiquitin Ligase Pathway. J Biol Chem. 2016;291(31):15975-15984. doi: 10.1074/jbc.M116.733733.
58. Sender R., Fuchs S., Milo R. Revised Estimates for the Number of Human and Bacteria Cells in the Body. PLoS Biol. 2016;14(8): e1002533. doi: 10.1371/journal.pbio.1002533.
59. Qin J., Li R., Raes J. et al. A human gut microbial gene catalogue established by metagenomic sequencing. Nature. 2010;464(7285):59-65. doi: 10.1038/nature08821.
60. Ashida H., Ogawa M., Kim M. et al. Bacteria and host interactions in the gut epithelial barrier. Nat Chem Biol. 2011;8(1):36-45. doi: 10.1038/nchembio.741.
61. Laudes M., Geisler C., Rohmann N. et al. Microbiota in Health and Disease-Potential Clinical Applications. Nutrients. 2021;13(11):3866. doi: 10.3390/nu13113866.
62. Knight R., Vrbanac A., Taylor B. et al. Best practices for analysing microbiomes. Nat Rev Microbiol. 2018;16(7):410-422. doi: 10.1038/s41579-018-0029-9.
63. Daliri E., Ofosu F., Chelliah R. et al. Challenges and Perspective in Integrated Multi-Omics in Gut Microbiota Studies. Biomolecules. 2021;11(2):300. doi: 10.3390/biom11020300.
64. Simenhoff M., Dunn S., Zollner G. et al. Biomodulation of the toxic and nutritional effects of small bowel bacterial overgrowth in end-stage kidney disease using freeze-dried Lactobacillus acidophilus. Miner Electrolyte Metab. 1996;22(1-3):92-96.
65. Vaziri N., Wong J., Pahl M. et al. Chronic kidney disease alters intestinal microbial flora. Kidney Int. 2013;83(2):308-315. doi: 10.1038/ki.2012.345.
66. Wong J., Piceno Y., DeSantis T. et al. Expansion of urease- and uricase-containing, indole- and p-cresol-forming and contraction of short-chain fatty acid-producing intestinal microbiota in ESRD. Am J Nephrol. 2014;39(3):230-237. doi: 10.1159/000360010.
67. Hugon P., Ramasamy D., Lagier J. et al. Non contiguous-finished genome sequence and description of Alistipesobesi sp. nov. Stand Genomic Sci. 2013;7(3):427-439. doi: 10.4056/sigs.3336746.
68. Dawson L., Stabler R., Wren B. Assessing the role of p-cresol tolerance in Clostridium difficile. J Med Microbiol. 2008;57(Pt 6):745-749. doi: 10.1099/jmm.0.47744-0.
69. Wang X., Yang S., Li S. et al. Aberrant gut microbiota alters host metabolome and impacts renal failure in humans and rodents. Gut. 2020;69(12):2131-2142. doi: 10.1136/gutjnl-2019-319766.
70. Moco S., Martin F., Rezzi S. Metabolomics view on gut microbiome modulation by polyphenol-rich foods. J Proteome Res. 2012;11(10):4781-4790. doi: 10.1021/pr300581s.
71. Ren Z., Fan Y., Li A. et al. Alterations of the Human Gut Microbiome in Chronic Kidney Disease. Adv Sci (Weinh). 2020;7(20):2001936. doi: 10.1002/advs.202001936.
72. Zhao J., Ning X., Liu B. et al. Specific alterations in gut microbiota in patients with chronic kidney disease: an updated systematic review. Ren Fail. 2021;43(1):102-112. doi: 10.1080/0886022X.2020.1864404.
73. Shohin I., Ramenskaya G. Methods of forecasting of the intestinal permeability of medicinal substances with the use of computer simulation. Journal Biomed. 2011;1(2):35-40. (in Russ.).@@ Шохин И. Е. Раменская Г. В. Методы прогнозирования кишечной проницаемости лекарственных веществ с применением компьютерного моделирования. Биомедицина. 2011;1(2):35-40.
74. Balimane P., Chong S., Morrison R. Current methodologies used for evaluation of intestinal permeability and absorption. J Pharmacol Toxicol Methods. 2000;44(1):301-312. doi: 10.1016/s1056-8719(00)00113-1.
75. Buda A., Hatem G., Neumann H. et al. Confocal laser endomicroscopy for prediction of disease relapse in ulcerative colitis: a pilot study. J Crohns Colitis. 2014;8(4):304-311. doi: 10.1016/j.crohns.2013.09.005.
76. Mutha P., Fasullo M., Chu S. et al. Correlation of Probe-Based Confocal Laser Endomicroscopy (pCLE) and Mucosal Integrity Testing (MIT) with Epithelial Barrier Function and Presence of Gastroesophageal Reflux Disease (GERD). Dig Dis Sci. 2021.doi: 10.1007/s10620-021-06980-w.
77. Patel D., Higginbotham T., Slaughter J. et al. Development and Validation of a Mucosal Impedance Contour Analysis System to Distinguish Esophageal Disorders. Gastroenterology. 2019;156(6):1617-1626.e1. doi: 10.1053/j.gastro.2019.01.253.
78. Nakagawa K., Hara K., Fikree A. et al. Patients with dyspepsia have impaired mucosal integrity both in the duodenum and jejunum: in vivo assessment of small bowel mucosal integrity using baseline impedance. J Gastroenterol. 2020;55(3):273-280. doi: 10.1007/s00535-019-01614-5.
79. Snouwaert J., Brigman K., Latour A. et al. An animal model for cystic fibrosis made by gene targeting. Science. 1992;257(5073):1083-1088. doi: 10.1126/science.257.5073.1083.
80. Zhou L., Dey C., Wert S. et al. Correction of a lethal intestinal defect in a mouse model of cystic fibrosis by human CFTR. Science. 1994;266(5191):1705-1708. doi: 10.1126/science.7527588.
Review
For citations:
Pyatchenkov M.O., Vlasov A.A., Sherbakov E.V., Belskykh A.N., Kryukov E.V., Markov A.G. Features of assessing the intestinal barrier permeability in chronic kidney disease. Experimental and Clinical Gastroenterology. 2022;(11):46-59. (In Russ.) https://doi.org/10.31146/1682-8658-ecg-207-11-46-59