Нарушение кишечной проницаемости и ее роль в развитии сердечно-сосудистых осложнений у лиц с воспалительными заболеваниями кишечника
https://doi.org/10.31146/1682-8658-ecg-207-11-36-45
Аннотация
Об авторах
О. В. ХлыноваРоссия
Е. А. Степина
Россия
Список литературы
1. Guan Q. A Comprehensive Review and Update on the Pathogenesis of Inflammatory Bowel Disease. J Immunol Res. 2019;2019:72472382019. doi: 10.1155/2019/7247238
2. Ng S.C., Shi H. Y., Hamidi N. et al. Worldwide incidence and prevalence of inflammatory bowel disease in the 21st century: a systematic review of population-based studies. Lancet. 2018;390(10114): 2769-2778. doi: 10.1016/S0140-6736(17)32448-0
3. Molodecky N.A., Soon I. S., Rabi D. M. et al. Increasing incidence and prevalence of the inflammatory bowel diseases with time, based on systematic review. Gastroenterology. 2012;142(1):46-54. doi: 10.1053/j.gastro.2011.10.001
4. Belousova E. A. Epidemiology of inflammatory bowel disease in Russia. Falk Symposium. 2006: 31.
5. Knyazev O.V., Shkurko T. V., Fadeyeva N. A., Bakulin I. G., Bordin D. S. Epidemiology of chronic inflammatory bowel disease. Yesterday, today, romorrow. Experimental and Clinical Gastroenterology. 2017;(3):4-12. (In Russ.)@@ Князев О. В., Шкурко Т. В., Фадеева Н. А., Бакулин И. Г., Бордин Д. С. Эпидемиология хронических воспалительных заболеваний кишечника. Вчера, сегодня, завтра. Экспериментальная и клиническая гастроэнтерология. 2017;139(3): 4-12.
6. Khor B., Gardet A., Xavier R. J. Genetics and pathogenesis of inflammatory bowel disease. Nature. 2011;474(7351): 307-317. doi: 10.1038/nature10209
7. Kaser A., Zeissig S., Blumberg R. S. Inflammatory bowel disease. Annual Review of Immunology. 2010;28: 573-621. doi: 10.1146/annurev-immunol-030409-101225
8. Peters L.A., Perrigoue J., Mortha A. et al. A functional genomics predictive network model identifies regulators of inflammatory bowel disease. Nature Genetics. 2017;49(10): 1437-1449. doi: 10.1038/ng.3947
9. Coskun M.Intestinal epithelium in inflammatory bowel disease. Frontiers in Medicine. 2014;1:24. doi: 10.3389/fmed.2014.00024.
10. Nishida A., Inoue R., Inatomi O. et al. Gut microbiota in the pathogenesis of inflammatory bowel disease. Journal of Clinical Gastroenterology. 2018; 11(1):1-10. doi: 10.1007/s12328-017-0813-5
11. Fritz J.V., Desai M. S., Shah P., Schneider J. G., Wilmes P. From meta-omics to causality: Experimental models for human microbiome research. Microbiome. 2013;1(1):14. doi: 10.1186/2049-2618-1-14.
12. Antoni L., Nuding S., Wehkamp J., Stange E. F.Intestinal barrier in inflammatory bowel disease. World Journal of Gastroenterology. 2014;20(5):1165-1179. doi: 10.3748/wjg.v20.i5.1165
13. Jager S., Stange E. F., Wehkamp J. Inflammatory bowel disease: an impaired barrier disease. Langenbeck’s Archives of Surgery. 2013; 398(1):1-12. doi: 10.1007/s00423-012-1030-9
14. Teshima W., Dieleman L. A., Meddings J. B. Abnormal intestinal permeability in Crohn’s disease pathogenesis. Annals of the New York Academy of Sciences. 2012;1258:159-165. doi: 10.1111/j.1749-6632.2012.06612.x
15. Vivinus-Nebot M., Frin-Mathy G., Bzioueche H. et al. Functional bowel symptoms in quiescent inflammatory bowel diseases: role of epithelial barrier disruption and low-grade inflammation. Gut. 2014; 63(5):744-752. doi: 10.1136/gutjnl-2012-304066
16. Zeissig S., Bürgel N., Günzel D. et al. Changes in expression and distribution of claudin 2, 5 and 8 lead to discontinuous tight junctions and barrier dysfunction in active Crohn’s disease. Gut. 2007; 56(1): 61-72. doi: 10.1136/gut.2006.094375
17. Fries W., Renda M. C., Lo Presti M. A. et al.Intestinal permeability and genetic determinants in patients, first-degree relatives, and controls in a high-incidence area of Crohn’s disease in Southern Italy. The American Journal of Gastroenterology. 2005;100(12): 2730-2736. doi: 10.1111/j.1572-0241.2005.00325.x
18. Buhner S., Buning C., Genschel J. et al. Genetic basis for increased intestinal permeability in families with Crohn’s disease: role of CARD15 3020insC mutation? Gut. 2006; 55(3): 342-347. doi: 10.1136/gut.2005.065557
19. Bamias G., Nyce M. R., De La Rue S. A., Cominelli F. New concepts in the pathophysiology of inflammatory bowel disease. Annals of Internal Medicine. 2005; 143(12): 895-904. doi: 10.7326/0003-4819-143-12-200512200-00007
20. Strober W., Watanabe T. NOD2, an intracellular innate immune sensor involved in host defense and Crohn’s disease. Mucosal Immunology. 2011; 4(5):484-495. doi: 0.1038/mi.2011.29.
21. Kevans D., Turpin W., Madsen K. et al. Determinants of intestinal permeability in healthy first-degree relatives of individuals with Crohn’s disease. Inflammatory Bowel Diseases. 2015;21(4):879-887. doi: 10.1097/MIB.0000000000000323
22. Rehman A., Sina C., Gavrilova O. et al. Nod2 is essential for temporal development of intestinal microbial communities. Gut. 2011;60(10): 1354-1362. doi: 10.1136/gut.2010.216259
23. Fava F., Danese S.Intestinal microbiota in inflammatory bowel disease: friend of foe? World Journal of Gastroenterology. 2011;17(5):557-566, doi: 10.3748/wjg.v17.i5.557
24. Chelakkot C., Ghim J., Ryu S. H. Mechanisms regulating intestinal barrier integrity and its pathological implications. Exp Mol Med. 2018;50(8):1-9. doi: 10.1038/s12276-018-0126-x
25. Smyth D., Phan V., Wang A., McKay D.M.Interferon-γ-induced increases in intestinal epithelial macromolecular permeability requires the Src kinase Fyn. Lab Investig.2011;91(5):764-777. doi: 10.1038/labinvest.2010.208
26. Schultz C. Lipopolysaccharide, structure and biological effects. Gen Intern Med Clin Innov. 2018;3:1-2. doi: 10.15761/GIMCI.1000152
27. Kim S., Patel D. S., Park S., Slusky J., Klauda J. B., Widmalm G. et al. Bilayer Properties of Lipid A from Various Gram-Negative Bacteria. Biophys J. 2016;111(8):1750-1760. doi: 10.1016/j.bpj.2016.09.001.
28. Rhee S. H. Lipopolysaccharide: Basic Biochemistry, Intracellular Signaling, and Physiological Impacts in the Gut.Intest Res. 2014;12(2):90-95. doi: 10.5217/ir.2014.12.2.90
29. Jang J.H., Shin H. W., Lee J. M., Lee H. W., Kim E. C., Park S. H. An Overview of Pathogen Recognition Receptors for Innate Immunity in Dental Pulp. Mediators Inflamm. 2015;2015:794143. doi: 10.1155/2015/794143
30. Mogensen T. H. Pathogen recognition and inflammatory signaling in innate immune defenses. Clin Microbiol Rev. 2009;22(2):240-273. doi: 10.1128/CMR.00046-08
31. Kawasaki T., Kawai T. Toll-like receptor signaling pathways. Front Immunol. 2014; 5:461. doi: 10.3389/fimmu.2014.00461
32. Koeth R. A., Levison B. S., Culley M. K. et al. γ-Butyrobetaine is a proatherogenic intermediate in gut microbial metabolism of L-carnitine to TMAO. Cell Metabolism. 2014;20(5):799-812. doi: 10.1016/j.cmet.2014.10.006
33. Yancey P. H. Organic osmolytes as compatible, metabolic and counteracting cytoprotectants in high osmolarity and other stresses. Journal of Experimental Biology. 2005;208(Pt 15):2819-2830. doi: 10.1242/jeb.01730
34. Zeisel S.H., da Costa K. A. Choline: an essential nutrient for public health. Nutrition Reviews. 2009;67(11):615-623. doi: 10.1111/j.1753-4887.2009.00246.x
35. Tang W. H., Wang Z., Levison B. S., et al.Intestinal microbial metabolism of phosphatidylcholine and cardiovascular risk. The New England Journal of Medicine. 2013;368(17):1575-1584. doi: 10.1056/NEJMoa1109400
36. Brown J. M., Hazen S. L. The gut microbial endocrine organ: bacterially derived signals driving cardiometabolic diseases. Annual Review of Medicine. 2015;66(1):343-359. doi: 10.1146/annurev-med-060513-093205.
37. Zhu W., Gregory J. C., Org E. et al. Gut microbial metabolite TMAO enhances platelet hyperreactivity and thrombosis risk. Cell. 2016;165(1):111-124. doi: 10.1016/j.cell.2016.02.011
38. Romano K. A., Vivas E. I., Amador-Noguez D., Rey F. E.Intestinal microbiota composition modulates choline bioavailability from diet and accumulation of the proatherogenic metabolite trimethylamine-N-oxide. mBio. 2015;6(2): e02481. doi: 10.1128/mBio.02481-14.
39. Geng J., Yang C., WangВ., Zhang X. et al. Trimethylamine N-oxide promotes atherosclerosis via CD36-dependent MAPK/JNK pathway. Biomed Pharmacother. 2018;97:941-947. doi: 10.1016/j.biopha.2017.11.016
40. Liu Y., Dai M. Trimethylamine N-Oxide Generated by the Gut Microbiota Is Associated with Vascular Inflammation: New Insights into Atherosclerosis.Mediators Inflamm. 2020; 2020:4634172. doi: 10.1155/2020/4634172.
41. Seldin M. M., Meng Y., Qi H. et al. Trimethylamine N-Oxide promotes vascular inflammation through signaling of mitogen-activated protein kinase and nuclear Factor-κB. Journal of the American Heart Association. 2016;5(2): e002767. doi: 10.1161/JAHA.115.002767.
42. Li T., Chen Y., Gua C., Li X. Elevated circulating trimethylamine N-oxide levels contribute to endothelial dysfunction in aged rats through vascular inflammation and oxidative stress. Frontiers in Physiology. 2017;8:350. doi: 10.3389/fphys.2017.00350
43. Mafune A., Iwamoto T., Tsutsumi Y. et al. Associations among serum trimethylamine-N-oxide (TMAO) levels, kidney function and infarcted coronary artery number in patients undergoing cardiovascular surgery: a cross-sectional study. Clinical and Experimental Nephrology. 2016;20(5):731-739. doi: 10.1007/s10157-015-1207-y
44. Senthong V., Wang Z., Li X. S. et al.Intestinal microbiota-generated metabolite trimethylamine-N-oxide and 5-year mortality risk in stable coronary artery disease: the contributory role of intestinal microbiota in a COURAGE-like patient cohort. Journal of the American Heart Association. 2016;5(6): e002816. doi: 10.1161/JAHA.115.002816
45. Ke Y., Li D., Zhao M. et al. Gut flora-dependent metabolite trimethylamine-N-oxide accelerates endothelial cell senescence and vascular aging through oxidative stress. Free Radical Biology and Medicine. 2018;116:88-100. doi: 10.1016/j.freeradbiomed.2018.01.007
46. Hansson G. K. Inflammation, atherosclerosis, and coronary artery disease N Engl J Med. 2005;352(16):1685-1695. doi: 0.1056/NEJMra043430
47. Lindhardsen J., Ahlehoff O., Gislason G. H., Madsen O. R. et al. The risk of myocardial infarction in rheumatoid arthritis and diabetes mellitus: a Danish nationwide cohort study. Ann Rheum Dis. 2011;70(6):929-934. doi: 10.1136/ard.2010.143396
48. Kim D., Zeng M. Y., Nunez G. The interplay between host immune cells and gut microbiota in chronic inflammatory diseases. Exp. Mol. Med. 2017;49(5): e339. doi: 10.1038/emm.2017.24.
49. Steinbach E.C., Plevy S. E. The role of macrophages and dendritic cells in the initiation of inflammation in IBD. Inflamm Bowel Dis. 2014;20(1):166-175. doi: 10.1097/MIB.0b013e3182a69dca.
50. Denning T. L., Wang Y. C., Patel S. R., Williams I. R., Pulendran B. Lamina propria macrophages and dendritic cells differentially induce regulatory and interleukin 17-producing T cell responses. Nat Immunol. 2007;8(10):1086-1094. doi: 10.1038/ni1511
51. Boyapati R., Satsangi J., Ho G. T. Pathogenesis of Crohn’s disease. F1000Prime Rep. 2015;7:44. doi: 10.12703/P7-44
52. Bradford K., Shih D. Q. Optimizing 6-mercaptopurine and azathioprine therapy in the management of inflammatory bowel disease. World J Gastroenterol. 2011;17(37):4166-4173. doi: 10.3748/wjg.v17.i37.4166
53. Poon S.S., Asher R., Jackson R., Kneebone A., Collins P. et al. Body mass index and smoking affect thioguanine nucleotide levels in inflammatory bowel disease. J Crohns Colitis. 2015;9(8): 640-646. doi: 10.1093/ecco-jcc/jjv084
54. Panhwar M. S., Mansoor E., Al-Kindi S.G., Sinh P., Katz J. et al. Risk of Myocardial Infarction in Inflammatory Bowel Disease: A Population-based National Study. Inflammatory Bowel Diseases. 2019; 25(6):1080-1087. doi: 10.1093/ibd/izy354
55. Kirchgesner J., Beaugerie L., Carrat F., Nyboe Andersen N., Jess T., Schwarzinger M. Increased risk of acute arterial events in young patients with severely active inflammatory bowel disease: a nationwide French cohort study. Gut. 2018;67(7):1261-1268. doi: 10.1136/gutjnl-2017-314015
56. Owczarek D., Cibor D., Glowacki M. K., Rodacki T., Mach T. Inflammatory bowel disease: epidemiology, pathology and risk factors for hypercoagulability. World J. Gastroenterol. 2014;20(1):53-63. doi: 10.3748/wjg.v20.i1.53
57. Aniwan S., Park S. H., Loftus E. V. Epidemiology, natural history, and risk stratification of Crohn’s disease. Gastroenterol Clin North Am. 2017;46 (3): 463-480. doi: 10.1016/j.gtc.2017.05.003
58. Panhwar M. S., Mansoor E., Al-Kindi S.G., Sinh P., Katz J., Oliveira G. H. et al. Risk of myocardial infarction in inflammatory bowel disease: a population-based national study. Inflamm Bowel Dis.2019;25(6):1080-1087. doi: 10.1093/ibd/izy354
59. Feng W., Chen G., Cai D., Zhao S., Cheng J., Shen H. Inflammatory bowel disease and risk of ischemic heart disease: an updated meta-analysis of cohort studies. J Am Heart Assoc.2017;6(8): e005892. doi: 10.1161/JAHA.117.005892
60. Genkel V. V., Shaposhnik I. I. Inflammatory Bowel Disease and Statins.Russian Journal of Gastroenterology, Hepatology, Coloproctology. 2020;30(1):7-13. (In Russ.) doi: 10.22416/1382-4376-2020-30-1-7-13@@ Генкель В. В., Шапошник И. И. Воспалительные заболевания кишечника и статины. Российский журнал гастроэнтерологии, гепатологии, колопроктологии. 2020;30(1):7-13.
61. Bereswill S., Muñoz M., Fischer A., et al. Anti-inflammatory effects of Resveratrol, Curcumin and simvastatin in acute small intestinal inflammation. PLoS One. 2010;5(12): e15099. doi: 10.1371/journal.pone.0015099
62. Grip O., Janciauskiene S., Bredberg A. Use of atorvastatin as an anti-inflammatory treatment in Crohn’s disease. Br J Pharmacol. 2008;155(7):1085-1092. doi: 10.1038/bjp.2008.369
63. Osterman M.T., Yang Y. X., Brensinger C., Forde K. A., Lichtenstein G. R., Lewis J. D. No increased risk of myocardial infarction among patients with ulcerative colitis or Crohn’s disease. Clin Gastroenterol Hepatol. 2011;9(10):875-880. doi: 10.1016/j.cgh.2011.06.032
64. Ruisi P., Makaryus J. N., Ruisi M., Makaryus A. N. Inflammatory bowel disease as a risk factor for premature coronary artery disease. J Clin Med Res. 2015;7(4):257-261. doi: 10.14740/jocmr2102w
65. Barnes E. L., Beery R. M., Schulman A. R., McCarthy E.P., Korzenik J. R., Winter R. W. Hospitalizations for acute myocardial infarction are decreased among patients with inflammatory bowel disease using a nationwide inpatient database. Inflamm Bowel Dis. 2016;22 (9): 2229-2237. doi: 10.1097/MIB.0000000000000899
66. Ehrenpreis E. D., Zhou Y., Alexoff A., Melitas C. Effect of the diagnosis of inflammatory bowel disease on risk-adjusted mortality in hospitalized patients with acute myocardial infarction, congestive heart failure and pneumonia. PLoS One. 2016;11(7): e0158926. doi: 10.1371/journal.pone.0158926
67. Sridhar A. R.M., Parasa S., Navaneethan U., Crowell, Olden K.Comprehensive study of cardiovascular morbidity in hospitalized inflammatory bowel disease patients. J Crohn’s Colitis. 2011;5(4):287-294. doi: 10.1016/j.crohns.2011.01.011
68. Agouridis A. P., Elisaf M., Milionis H. J. An overview of lipid abnormalities in patients with inflammatory bowel disease. Ann Gastroenterol. 2011;24(3):181-187.
69. Romanato G., Scarpa M., Angriman I., Faggian D. et al. Plasma lipids and inflammation in active inflammatory bowel diseases. Aliment Pharmacol Ther. 2009;29(3):298-307. doi: 10.1111/j.1365-2036.2008.03886.x
70. Dagli N., Poyrazoglu O. K., Dagli A. F., Sahbaz F., Karaca I., Kobat M. A. et al. Is inflammatory bowel disease a risk factor for early atherosclerosis? Angiology. 2010;61(2):198-204. doi: 0.1177/0003319709333869
71. Geerling B. J., Badart-Smook A., Stockbrugger R. W., Brummer R. J.Comprehensive nutritional status in recently diagnosed patients with inflammatory bowel disease compared with population controls. Eur J Clin Nutr. 2000;54(6):514-521. doi: 10.1038/sj.ejcn.1601049
72. Khalili H., Ananthakrishnan A. N., Konijeti G. G., Higuchi L. M. et al. Measures of obesity and risk of Crohn’s disease and ulcerative colitis. Inflamm Bowel Dis. 2015;21(2): 361-368. doi: 10.1097/MIB.0000000000000283
73. Harper J. W., Sinanan M. N., Zisman T. L. Increased body mass index is associated with earlier time to loss of response to infliximab in patients with inflammatory bowel disease. Inflamm Bowel Dis. 2013;19(10):2118-2124. doi: 10.1097/MIB.0b013e31829cf401
74. Halling M. L., Kjeldsen J., Knudsen T., Nielsen J., Hansen L. K. Patients with inflammatory bowel disease have increased risk of autoimmune and inflammatory diseases. World J Gastroenterol. 2017;23(33):6137-6146. doi: 10.3748/wjg.v23.i33.6137.
75. Kappelman M. D., Galanko J. A., Porter C. Q., Sandler R. S. Association of paediatric inflammatory bowel disease with other immune-mediated diseases. Arch Dis Child. 2011;96(11):1042-1046.
Рецензия
Для цитирования:
Хлынова О.В., Степина Е.А. Нарушение кишечной проницаемости и ее роль в развитии сердечно-сосудистых осложнений у лиц с воспалительными заболеваниями кишечника. Экспериментальная и клиническая гастроэнтерология. 2022;(11):36-45. https://doi.org/10.31146/1682-8658-ecg-207-11-36-45
For citation:
Khlynova O.V., Stepina E.A. Disturbance of intestinal permeability and its role in the development of cardiovascular complications in persons with inflammatory bowel diseases. Experimental and Clinical Gastroenterology. 2022;(11):36-45. (In Russ.) https://doi.org/10.31146/1682-8658-ecg-207-11-36-45