Preview

Experimental and Clinical Gastroenterology

Advanced search

Cells of the Caco-2 line as a model for studying the absorption of medicinal substances

https://doi.org/10.31146/1682-8658-ecg-206-10-63-69

Abstract

Cells of the Caco-2 line have the basic properties of enterocytes of the small intestine, and therefore can be used to study the absorption of medicinal substances. Aim. To characterize the properties of the Caco-2 cell line from the Institute of Cytology of the Russian Academy of Sciences and to evaluate with its help the mechanism of absorption of the original domestic drug - ethylmethylhydroxypyridine succinate (EMGPS). Materials and methods. The study was performed on Caco2 cells that were cultured for 21 days, since at this time their spontaneous differentiation into polarized cells similar to enterocytes of the small intestine occurs. The density of the cell monolayer was estimated by the value of transepithelial resistance. The number of major efflux proteins of glycoprotein-P transporters (Pgp) and breast cancer resistance protein (BCRP) in Caco-2 cells was analyzed using enzyme immunoassay. In specialized transwell systems, the transport of the Pgp substrate fexofenadine (40, 150 and 300 microns), the BCRP substrate methotrexate (5, 10, 50 microns) and EMGPS (10, 100 and 250 microns) through the cell monolayer was studied. The results of the study. By day 21 of cultivation, cells of the Caco2 line formed a merging monolayer with pronounced dense contacts. The amount of Pgp and BCRP was 110.8±14.1 ng/mg and 4.39±0.12 ng/mg, respectively, which correlates with the amount of these proteins in the human small intestine. Transport of fexofenadine (40, 150 and 300 microns) and methotrexate (5 microns) from the basolateral chamber to the apical chamber (corresponding to transport from enterocytes to the intestinal lumen) prevailed over transport in the opposite direction, which is associated with the work of Pgp and BCRP. The transport of EMGPS significantly exceeded the transport of fexofenadine and methotrexate and was symmetrical with respect to the cellular monolayer. Conclusion. Thus, the cells of the Caco-2 line, commercially available in the Russian Federation, have the basic properties of enterocytes of the small intestine, and can be used to study the absorption of medicinal substances in vitro. EMGPS quickly passes through the cellular monolayer, and the mechanism of its absorption is passive diffusion, without the participation of specific transporters.

About the Authors

A. V. Shchulkin
Ryazan State Medical University
Russian Federation


Yu. S. Tranova
Ryazan State Medical University
Russian Federation


Yu. V. Abalenikhina
Ryazan State Medical University
Russian Federation


A. S. Esenina
Ryazan State Medical University
Russian Federation


A. A. Slepnev
Ryazan State Medical University
Russian Federation


E. N. Yakusheva
Ryazan State Medical University
Russian Federation


References

1. Fogh J., Fogh J. M., Orfeo T. One hundred and twenty-seven cultured human tumor cell lines producing tumors in nude mice. J Nat Cancer Inst.1977; 59(1):221-226. doi: 10.1093/jnci/59.1.221.

2. Chantret I., Barbat A., Dusaulx E. et al. Epithelial polarity, vilin expresion, and enterocytic differentiation of cultured human colon carcinoma cels: A survey of twenty cell lines. Cancer Res.1988;48:1936.

3. Sun H., Chow E. C., Liu S., et al. The Caco-2 cell monolayer: Usefulness and limitations. Expert Opin. Drug Metab. Toxicol. 2008;4(4): 395-411. doi: 10.1517/17425255.4.4.395.

4. Vachon P.H., Beaulieu J. F. Transient mosaic patterns of morphological and functional differentiation in the Caco-2 cell line. Gastroenterology. 1992; 103:414-423. doi: 10.1016/0016-5085(92)90829-n.

5. Watson C.J., Rowland M., Warhurst G. Functional modeling of tight junctions in intestinal cell monolayers using polyethylene glycol oligomers. Am J Physiol Cell Physiol. 2001;281:388-397. doi: 10.1152/ajpcell.2001.281.2.C388.

6. Thambavita D., Galappatthy P., Mannapperuma U., et al. Biowaiver Monograph for Immediate-Release Solid Oral Dosage Forms: Amoxicillin Trihydrate. J Pharm Sci. 2017;106(10):2930-2945. doi: 10.1016/j.xphs.2017.04.068.

7. Tampal N., Mandula H., Zhang H., et al. Biopharmaceutics classification system-based biowaivers for generic oncology drug products: case studies. AAPS PharmSciTech. 2015;16(1):5-9. doi: 10.1208/s12249-014-0195-7.

8. U.S. Department of Health and Human Services Food and Drug Administration, Center for Drug Evaluation and Research (CDER). In Vitro Drug Interaction Studies - Cytochrome P450 Enzyme- and Transporter Mediated Drug Interactions Guidance for Industry, 2020, 43 P.

9. Liu X., Pan G. Drug Transporters in Drug Disposition, Effects and Toxicity. Advances in Experimental Medicine and Biology. 2019; 1141:580 P.

10. Natoli M., Leoni B. D., D’Agnano I., Zucco F., Felsani A. Good Caco-2 cell culture practices. Toxicol In Vitro. 2012. 26(8):1243-6. doi:10.1016/j.tiv.2012.03.009.

11. Elsby R., Surry D. D., Smith V. N., Gray A. J. Validation and application of Caco-2 assays for the in vitro evaluation of development candidate drugs as substrates or inhibitors of P-glycoprotein to support regulatory submissions. Xenobiotic. 2008;(38):1140-1164. doi:10.1080/00498250802050880.

12. Erokhina P.D., Abalenikhina Yu.V., Shchulkin A. V., Chernykh I. V. et al. A study of influence of progesterone on activity of glycoprotein-P in vitro. I. P. Pavlov Russian Medical Biological Herald. 2020;28(2):135-42. (in Russ.) doi:10.23888/PAVLOVJ2020282135-142.@@ Ерохина П. Д., Абаленихина Ю. В., Щулькин А. В., Черных И. В. и др. Изучение влияния прогестерона на активность гликопротеина-Р in vitro. Российский медико-биологический вестник имени академика И. П. Павлова. 2020; 28(2): 135-142. doi:10.23888/PAVLOVJ2020282135-142.

13. Chernyh I.V., SHCHul’kin A.V., Gacanoga M. V., Myl’nikov P.YU. [Development of an HPLC method for the quantitative determination of ethylmethylhydroxypyridine succinate in the blood plasma of rats and rabbits]. I. P. Pavlov Russian Medical Biological Herald. 2015;23(1):62-66. (In Russ).@@ Черных И. В., Щулькин А. В., Гацанога М. В., Мыльников П. Ю. Разработка ВЭЖХ методики количественного определения этилметилгидроксипиридина сукцината в плазме крови крыс и кроликов. Российский медико-биологический вестник имени академика И. П. Павлова. 2015;(23)1:62-66.

14. Mylnikov P. Yu., Tranova Yu., Shchulkin A. V., Yakusheva E. N. Development and validation of the method for the quantitative determination of methotrexate in a transport medium by HPLC-MS/MS. Pharmacokinetics and Pharmacodynamics. 2021;(1):45-51. (In Russ.) doi:10.37489/2587-7836-2021-1-45-51.@@ Мыльников П. Ю., Транова Ю., Щулькин А. В., Якушева Е. Н. Разработка и валидация методики количественного определения метотрексата в транспортной среде методом ВЭЖХ-МC/МС. Фармакокинетика и фармакодинамика. 2021;(1):45-51. doi:10.37489/2587-7836-2021-1-45-51.

15. Department of Health and Human Services, Food and Drug Administration, Center for Drug Evolution and Research (CDER). Bioanalytical method validation. U. S. Government Printing Office: Washington, DC, 2018, 41 P.

16. Kim K.A., Park J. Y. Effect of metronidazole on the pharmacokinetics of fexofenadine, a P-glycoprotein substrate, in healthy male volunteers. Eur J Clin Pharmacol. 2010; 66(7):721-5. doi: 10.1007/s00228-010-0797-2.

17. Hilgers A.R., Conradi R. A., Burton P. S. Caco-2 cell monolayers as a model for drug transport across the intestinal mucosa. Pharm Res. 1990;(7):902-910. doi:10.1023/a:1015937605100

18. Fine K.D., Santa Ana C. A., Porter J. L., Fordtran J. S. Effect of changing intestinal flow rate on a measurement of intestinal permeability. Gastroenterology. 1995;108:983-989. doi: 10.1016/0016-5085(95)90193-0.

19. Al-Majdoub Z.M., Achour B., Couto N., Howard M., Elmorsi Y. et al. Mass spectrometry-based abundance atlas of ABC transporters in human liver, gut, kidney, brain and skin. FEBS Lett. 2020;594(23):4134-4150. doi: 10.1002/1873-3468.13982.

20. Maksimovic V., Pavlovic-Popovic Z., Vukmirovic S., Cvejic J. et al. Molecular mechanism of action and pharmacokinetic properties of methotrexate. Mol Biol Rep. 2020;47(6):4699-4708. doi: 10.1007/s11033-020-05481-9

21. Narawa T., Tsuda Ya., Itoh T. Chiral Recognition of Amethopterin Enantiomers by the Reduced Folate Carrier in Caco-2 Cells. Drug Metab. Pharmacokinet. 2007;22(1):33-40. doi: 10.2133/dmpk.22.33.

22. Shchul’kin A.V., CHernyh I.V., Gacanoga M. V., YAkusheva E. N. Vliyanie afobazola na aktivnost’ ABCB1-belka u pacientov s nizkoj trevozhnost’yu. [Effect of afobazole on ABCB1 protein activity in patients with low anxiety]. Pharmacogenetics and Pharmacogenomics. 2019;(2):35-37. (In Russ.) doi: 10.24411/2588-0527-2019-10060.@@ Щулькин А. В., Черных И. В., Гацанога М. В., Якушева Е. Н. Влияние афобазола на активность ABCB1-белка у пациентов с низкой тревожностью. Фармакогенетика и фармакогеномика. 2019;2:35-37. doi: 10.24411/2588-0527-2019-10060. (In Russ.)

23. Shchulkin A.V., Yakusheva E. N., Chernykh I. V. The distribution of mexidol in the rat’s brain and its subcellular fractions. Zhurnal Nevrologii i Psikhiatrii imeni S. S. Korsakova. 2014;114(8):70-73. (In Russ.)@@ Щулькин А. В., Якушева Е. Н., Черных И. В. Распределение мексидола в структурах головного мозга, его клеточных элементах и субклеточных фракциях. Журнал неврологии и психиатрии им. С. С. Корсакова. 2014;114(8):70-73.


Review

For citations:


Shchulkin A.V., Tranova Yu.S., Abalenikhina Yu.V., Esenina A.S., Slepnev A.A., Yakusheva E.N. Cells of the Caco-2 line as a model for studying the absorption of medicinal substances. Experimental and Clinical Gastroenterology. 2022;(10):63-69. (In Russ.) https://doi.org/10.31146/1682-8658-ecg-206-10-63-69

Views: 960


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1682-8658 (Print)