Некротизирующий энтероколит у недоношенных детей: состояние кишечного барьера, особенности метаболизма витамина D и их генетическая регуляция
https://doi.org/10.31146/1682-8658-ecg-202-6-61-75
Аннотация
Ключевые слова
Об авторах
Елена Владимировна ЛошковаРоссия
Валерия Константиновна Прудникова
Россия
Юлия Сергеевна Рафикова
Россия
Леонид Владимирович Ким
Россия
Татьяна Сергеевна Люлька
Россия
Виктор Александрович Желев
Россия
Татьяна Владимировна Саприна
Россия
Екатерина Александровна Боженко
Россия
Елена Ивановна Кондратьева
Россия
Нуринисо Джумаевна Одинаева
Россия
Галина Николаевна Янкина
Россия
Анатолий Ильич Хавкин
Россия
Список литературы
1. Jones I.H., Hall N. J., J. Pediatr, et al. Contemporary outcomes for infants with necrotizing enterocolitis - a systematic review. Recent advances in understanding necrotizing enterocolitis. F1000Res, 107 (2019). 2020;220:86-92 e83.
2. Zani A., Pierro A. Necrotizing enterocolitis: controversies and challenges. F1000Res. 2015 Nov 30;4: F1000 Faculty Rev-1373. doi: 10.12688/f1000research.6888.1.
3. Barbara G., Barbaro M. R., Fuschi D., et al. Inflammatory and Microbiota-Related Regulation of the Intestinal Epithelial Barrier. Front Nutr. 2021 Sep 13;8:718356. doi: 10.3389/fnut.2021.718356. Erratum in: Front Nutr. 2021 Nov 01;8:790387.
4. Khavkin A. I., Bogdanova N. M., Novikova V. P. The biological role of zonulin and the effectiveness of its use as a biomarker of the syndrome of increased intestinal permeability.Russian Bulletin of Perinatology and Pediatrics. 2021;66(1):31-38. (in Russ.) doi: 10.21508/1027-4065-2021-66-1-31-38. @@Хавкин А. И., Богданова Н. М., Новикова В. П. Биологическая роль зонулина и эффективность его использования в качестве биомаркера синдрома повышенной кишечной проницаемости. Российский вестник перинатологии и педиатрии. 2021;66(1):31-38. doi: 10.21508/1027-4065-2021-66-1-31-38.
5. Simanenkov V. I., Maev I. V., Tkacheva O. N., et al. Epithelial permeability syndrome in clinical practice. Multidisciplinary national consensus. Cardiovascular therapy and prevention. 2021;20(1):2758. (in Russ.) doi: 10.15829/1728-8800-2021-2758. @@Симаненков В. И., Маев И. В., Ткачева О. Н., и др. Синдром повышенной эпителиальной проницаемости в клинической практике. Мультидисциплинарный национальный консенсус. Кардиоваскулярная терапия и профилактика. 2021;20(1):2758. doi: 10.15829/1728-8800-2021-2758.
6. Adams D. H. Sleisenger and Fordtran’s Gastrointestinal and Liver Disease. Gut. 2007 Aug;56(8):1175. doi: 10.1136/gut.2007.121533.
7. Kozieł M.J., Ziaja M., Piastowska-Ciesielska A. W.Intestinal Barrier, Claudins and Mycotoxins. Toxins (Basel). 2021 Oct 26;13(11):758. doi: 10.3390/toxins13110758.
8. Fasano A. All disease begins in the (leaky) gut: role of zonulin-mediated gut permeability in the pathogenesis of some chronic inflammatory diseases. F1000Res. 2020 Jan 31;9: F1000 Faculty Rev-69. doi: 10.12688/f1000research.20510.1.
9. Vermette D., Hu P., Canarie M. F., Funaro M., Glover J., Pierce R. W. Tight junction structure, function, and assessment in the critically ill: a systematic review.Intensive Care Med Exp. 2018 Sep 26;6(1):37. doi: 10.1186/s40635-018-0203-4.
10. Zhao X., Zeng H., Lei L., et al. Tight junctions and their regulation by non-coding RNAs.Int J Biol Sci. 2021 Jan 31;17(3):712-727. doi: 10.7150/ijbs.45885.
11. Wood Heickman L. K., DeBoer M.D., Fasano A. Zonulin as a potential putative biomarker of risk for shared type 1 diabetes and celiac disease autoimmunity. Diabetes Metab Res Rev. 2020 Jul;36(5): e3309. doi: 10.1002/dmrr.3309.
12. Rosenthal R., Günzel D., Piontek J., Krug S. M., Ayala-Torres C., Hempel C., et al. Claudin-15 forms a water channel through the tight junction with distinct function compared to claudin-2. Acta Physiol (Oxf). 2020 Jan;228(1): e13334. doi: 10.1111/apha.13334.
13. Krug S.M., Günzel D., Conrad M. P., et al. Claudin-17 forms tight junction channels with distinct anion selectivity. Cell Mol Life Sci. 2012 Aug;69(16):2765-78. doi: 10.1007/s00018-012-0949-x.
14. Sampath V., Bhandari V., Berger J., et al. A functional ATG16L1 (T300A) variant is associated with necrotizing enterocolitis in premature infants. Pediatr Res. 2017 Apr;81(4):582-588. doi: 10.1038/pr.2016.260.
15. Fawley J., Cuna A., Menden H. L., et al. Single-Immunoglobulin Interleukin-1-Related Receptor regulates vulnerability to TLR4-mediated necrotizing enterocolitis in a mouse model. Pediatr Res. 2018 Jan;83(1-1):164-174. doi: 10.1038/pr.2017.211.
16. Tian J., Liu Y., Jiang Y., et al. Association of single nucleotide polymorphisms of IL23R and IL17 with necrotizing enterocolitis in premature infants. Mol Cell Biochem. 2017 Jun;430(1-2):201-209. doi: 10.1007/s11010-017-2972-6.
17. Szpecht D., Neumann-Klimasińska N., Błaszczyński M., et al. Candidate gene analysis in pathogenesis of surgically and non-surgically treated necrotizing enterocolitis in preterm infants. Mol Cell Biochem. 2018 Feb;439(1-2):53-63. doi: 10.1007/s11010-017-3135-5.
18. Huizing M.J., Cavallaro G., Moonen R. M., et al. Is the C242T Polymorphism of the CYBA Gene Linked with Oxidative Stress-Associated Complications of Prematurity? Antioxid Redox Signal. 2017 Dec 10;27(17):1432-1438. doi: 10.1089/ars.2017.7042.
19. Prencipe G., Azzari C., Moriondo M., et al. Association between mannose-binding lectin gene polymorphisms and necrotizing enterocolitis in preterm infants. J Pediatr Gastroenterol Nutr. 2012 Aug;55(2):160-5. doi: 10.1097/MPG.0b013e31824e5f7a.
20. Sankararaman S., Yanamandra K., Napper D., Caldito G., Dhanireddy R. The prevalence of platelet activating factor acetylhydrolase single nucleotide polymorphisms in relationship to necrotizing enterocolitis in Northwest Louisiana infants. Springerplus. 2013 Jul 2;2(1):294. doi: 10.1186/2193-1801-2-294.
21. Yan X., Managlia E., Liu S. X., Tan X. D., Wang X., Marek C., et al. Lack of VEGFR2 signaling causes maldevelopment of the intestinal microvasculature and facilitates necrotizing enterocolitis in neonatal mice. Am J Physiol Gastrointest Liver Physiol. 2016 May 1;310(9): G716-25. doi: 10.1152/ajpgi.00273.2015.
22. Ma F., Li S., Hao H., Gao P., Dai Y., Himani C., et al. Association of Heparin-binding EGF-like Growth Factor Polymorphisms With Necrotizing Enterocolitis in Preterm Infants. J Pediatr Gastroenterol Nutr. 2018 Apr;66(4): e99-e102. doi: 10.1097/MPG.0000000000001753.
23. Llanos A.R., Moss M. E., Pinzòn M. C., Dye T., Sinkin R. A., Kendig J. W. Epidemiology of neonatal necrotising enterocolitis: a population-based study. Paediatr Perinat Epidemiol. 2002 Oct;16(4):342-9. doi: 10.1046/j.1365-3016.2002.00445.x.
24. Bein A., Eventov-Friedman S., Arbell D., Schwartz B.Intestinal tight junctions are severely altered in NEC preterm neonates. Pediatr Neonatol. 2018 Oct;59(5):464-473. doi: 10.1016/j.pedneo.2017.11.018.
25. Hoffsten A., Markasz L., Lilja H. E., Olsson K. W., Sindelar R. Early Postnatal Comprehensive Biomarkers Cannot Identify Extremely Preterm Infants at Risk of Developing Necrotizing Enterocolitis. Front Pediatr. 2021 Oct 22;9:755437. doi: 10.3389/fped.2021.755437.
26. de Kroon R. R., de Baat T., Senger S., van Weissenbruch M. M. Amniotic Fluid: A Perspective on Promising Advances in the Prevention and Treatment of Necrotizing Enterocolitis. Front Pediatr. 2022 Mar 14;10:859805. doi: 10.3389/fped.2022.859805.
27. MacQueen B.C., Christensen R. D., Yost C. C., Gordon P. V., Baer V. L., Schlaberg R, Lowe J. Reference intervals for stool calprotectin in preterm neonates and their utility for the diagnosis of necrotizing enterocolitis. J. Perinatol. 2018 Oct;38(10):1379-1385. doi: 10.1038/s41372-018-0108-9.
28. Zoppelli L., Güttel C., Bittrich H. J., Andrée C., Wirth S., Jenke A. Fecal calprotectin concentrations in premature infants have a lower limit and show postnatal and gestational age dependence. Neonatology. 2012;102(1):68-74. doi: 10.1159/000337841.
29. van Zoonen A. G.J.F., Hulzebos C. V., Muller Kobold A. C., Kooi E. M.W., Bos A. F., Hulscher J. B.F. Serial fecal calprotectin in the prediction of necrotizing enterocolitis in preterm neonates. J Pediatr Surg. 2019 Mar;54(3):455-459. doi: 10.1016/j.jpedsurg.2018.04.034.
30. Baranowski J.R., Claud E. C. Necrotizing Enterocolitis and the Preterm Infant Microbiome. Adv Exp Med Biol. 2019;1125:25-36. doi: 10.1007/5584_2018_313.
31. Wang K., Tao G., Sun Z., Sylvester K. G. Recent potential noninvasive biomarkers in necrotizing enterocolitis. Gastroenterol. Res. Pract. 2019 Apr 22;2019:8413698. doi: 10.1155/2019/8413698.
32. Alganabi M., Lee C., Bindi E., Li B., Pierro, A. Recent advances in understanding necrotizing enterocolitis. F1000Res. 2019 Jan 25;8: F1000 Faculty Rev-107. doi: 10.12688/f1000research.
33. Kim L. V., Zhelev V. A., Slizovskii G. V., et al. Some aspects of etiopathogenesis and diagnosis of necrotizing enterocolitis in children. Mother and Child in Kuzbass. 2021;3 (86):21-26 (in Russ.) @@Ким Л. В., Желев В. А., Слизовский Г. В., и др. Некоторые аспекты этиопатогенеза и диагностики некротизирующего энтероколита у детей //Мать и Дитя в Кузбассе. 2021. № 3(86). С. 21-26.
34. Wang K., Tao G., Sun Z., Sylvester K. G. Recent potential noninvasive biomarkers in necrotizing enterocolitis. Gastroenterol. Res. Pract. 2019 Apr 22;2019:8413698. doi: 10.1155/2019/8413698.
35. Wang K., Tao G., Sylvester K. G. Recent advances in prevention and therapies for clinical or experimental necrotizing enterocolitis. Dig. Dis. Sci. 2019 Nov;64(11):3078-3085. doi: 10.1007/s10620-019-05618-2.
36. Union of Pediatricians of Russia. National program Vitamin D deficiency in children and adolescents of the Russian Federation: modern approaches to correction. Moscow. Pediatr, 2021. 96 p. (in Russ.) @@Национальная программа «Недостаточность витамина D у детей и подростков Российской Федерации: современные подходы к коррекции» / Союз педиатров России [и др.]. - М.: ПедиатрЪ, 2021. - 96 с.
37. Chen Z., Lv X., Hu W., Qian X., Wu T., Zhu Y. Vitamin D Status and Its Influence on the Health of Preschool Children in Hangzhou. Front Public Health. 2021 May 17;9:675403. doi: 10.3389/fpubh.2021.675403.
38. Ncayiyana J.R., Martinez L., Goddard E., Myer L., Zar H. J. Prevalence and Correlates of Vitamin D Deficiency among Young South African Infants: A Birth Cohort Study. Nutrients. 2021 Apr 29;13(5):1500. doi: 10.3390/nu13051500.
39. Loshkova E. V., Ponomarenko Yu. B. Seasonal fluctuations in vitamin D levels in children with oncohematological diseases. Experimental and clinical gastroenterology. 2022;197(1): 14-17 (in Russ.) doi: 10.31146/1682-8658-ecg-197-1-14-17. @@Лошкова Е. В., Пономаренко Ю. Б. Сезонные колебания уровня витамина D у детей при онкогематологических заболеваниях. Экспериментальная и клиническая гастроэнтерология. 2022;197(1): 14-17. doi: 10.31146/1682-8658-ecg-197-1-14-17.
40. Kondratieva E. I., Loshkova E. V., Zakharova I. N., Shubina Yu.F., Saprina T. V., Nikonova V. S. Assessment of vitamin D sufficiency in different age periods. Meditsinskiy sovet = Medical Council. 2021;(12):294-303. (In Russ.) doi: 10.21518/2079-701X-2021-12-294-303. @@Кондратьева Е. И., Лошкова Е. В., Захарова И. Н., Шубина Ю. Ф., Саприна Т. В., Никонова В. С. Оценка обеспеченности витамином D в различные возрастные периоды Медицинский совет. 2021. № 12. С. 294-303. doi: 10.21518/2079-701X-2021-12-294-303.
41. Kondratyeva E.I., Loshkova E. V., Zakharova I. N., et al. Vitamin D deficiency: gender characteristics. Endocrinology: news, opinions, training. 2021;10(2):18-25. (in Russ.) @@Кондратьева Е. И., Лошкова Е. В., Захарова И. Н., и др. Дефицит витамина D: гендерные особенности. Эндокринология: новости, мнения, обучение. 2021. Т. 10, № 2. C. 18-25.
42. Chen Z., Lv X., Hu W., Qian X., Wu T., Zhu Y. Vitamin D Status and Its Influence on the Health of Preschool Children in Hangzhou. Front Public Health. 2021 May 17;9:675403. doi: 10.3389/fpubh.2021.675403.
43. Ncayiyana J.R., Martinez L., Goddard E., Myer L., Zar H. J. Prevalence and Correlates of Vitamin D Deficiency among Young South African Infants: A Birth Cohort Study. Nutrients. 2021 Apr 29;13(5):1500. doi: 10.3390/nu13051500.
44. Gašparović Krpina M., Barišić A., Peterlin A., et al. Vitamin D receptor polymorphisms in spontaneous preterm birth: a case-control study. Croat Med J. 2020 Aug 31;61(4):338-345. doi: 10.3325/cmj.2020.61.338.
45. Kosik K., Szpecht D., Al-Saad S.R., et al. Single nucleotide vitamin D receptor polymorphisms (FokI, BsmI, ApaI, and TaqI) in the pathogenesis of prematurity complications. Sci Rep. 2020 Dec 3;10(1):21098. doi: 10.1038/s41598-020-78125-4.
46. Merewood A., Mehta S. D., Grossman X., et al. Widespread vitamin D deficiency in urban Massachusetts newborns and their mothers. Pediatrics. 2010 Apr;125(4):640-7. doi: 10.1542/peds.2009-2158.
47. Chen Z., Lv X., Hu W., Qian X., Wu T., Zhu Y. Vitamin D Status and Its Influence on the Health of Preschool Children in Hangzhou. Front Public Health. 2021 May 17;9:675403. doi: 10.3389/fpubh.2021.675403.
48. Burris H.H., Van Marter L. J., McElrath T.F., et al. Vitamin D status among preterm and full-term infants at birth. Pediatr Res. 2014 Jan;75(1-1):75-80. doi: 10.1038/pr.2013.174.
49. Ncayiyana J.R., Martinez L., Goddard E., Myer L., Zar H. J. Prevalence and Correlates of Vitamin D Deficiency among Young South African Infants: A Birth Cohort Study. Nutrients. 2021 Apr 29;13(5):1500. doi: 10.3390/nu13051500.
50. Kim I., Kim S. S., Song J. I., Yoon S. H., Park G. Y., Lee Y. W. Association between vitamin D level at birth and respiratory morbidities in very-low-birth-weight infants. Korean J Pediatr. 2019 May;62(5):166-172. doi: 10.3345/kjp.2018.06632.
51. Cuna A., George L., Sampath V. Genetic predisposition to necrotizing enterocolitis in premature infants: Current knowledge, challenges, and future directions. Semin Fetal Neonatal Med. 2018 Dec;23(6):387-393. doi: 10.1016/j.siny.2018.08.006.
52. Sampath V., Menden H., Helbling D., Li K., Gastonguay A., Ramchandran R., et al. SIGIRR genetic variants in premature infants with necrotizing enterocolitis. Pediatrics. 2015 Jun;135(6): e1530-4. doi: 10.1542/peds.2014-3386.
53. Gašparović Krpina M., Barišić A., Peterlin A., et al. Vitamin D receptor polymorphisms in spontaneous preterm birth: a case-control study. Croat Med J. 2020 Aug 31;61(4):338-345. doi: 10.3325/cmj.2020.61.338.
54. Castanet M., Costalos C., Haiden N., Hascoet J. M., et al. Early Effect of Supplemented Infant Formulae on Intestinal Biomarkers and Microbiota: A Randomized Clinical Trial. Nutrients. 2020 May 20;12(5):1481. doi: 10.3390/nu12051481.
55. De Fazio L., Beghetti I., Bertuccio S. N., et al. Necrotizing Enterocolitis: Overview on In Vitro Models.Int J Mol Sci. 2021 Jun 23;22(13):6761. doi: 10.3390/ijms22136761.
56. Rycyk A., Cudowska B., Lebensztejn D. M. Eosinophil-Derived Neurotoxin, Tumor Necrosis Factor Alpha, and Calprotectin as Non-Invasive Biomarkers of Food Protein-Induced Allergic Proctocolitis in Infants. J Clin Med. 2020 Sep 29;9(10):3147. doi: 10.3390/jcm9103147.
57. Sampath V., Menden H., Helbling D., et al. SIGIRR genetic variants in premature infants with necrotizing enterocolitis. Pediatrics. 2015 Jun;135(6): e1530-4. doi: 10.1542/peds.2014-3386.
58. Tremblay É., Thibault M. P., Ferretti E., et al. Gene expression profiling in necrotizing enterocolitis reveals pathways common to those reported in Crohn’s disease. BMC Med Genomics. 2016 Jan 22;9:6. doi: 10.1186/s12920-016-0166-9.
59. Kosik K., Szpecht D., Al-Saad S.R., et al. Single nucleotide vitamin D receptor polymorphisms (FokI, BsmI, ApaI, and TaqI) in the pathogenesis of prematurity complications. Sci Rep. 2020 Dec 3;10(1):21098. doi: 10.1038/s41598-020-78125-4.
60. Yan X., Managlia E., Liu S. X., et al. Lack of VEGFR2 signaling causes maldevelopment of the intestinal microvasculature and facilitates necrotizing enterocolitis in neonatal mice. Am J Physiol Gastrointest Liver Physiol. 2016 May 1;310(9): G716-25. doi: 10.1152/ajpgi.00273.2015.
Рецензия
Для цитирования:
Лошкова Е.В., Прудникова В.К., Рафикова Ю.С., Ким Л.В., Люлька Т.С., Желев В.А., Саприна Т.В., Боженко Е.А., Кондратьева Е.И., Одинаева Н.Д., Янкина Г.Н., Хавкин А.И. Некротизирующий энтероколит у недоношенных детей: состояние кишечного барьера, особенности метаболизма витамина D и их генетическая регуляция. Экспериментальная и клиническая гастроэнтерология. 2022;(6):61-75. https://doi.org/10.31146/1682-8658-ecg-202-6-61-75
For citation:
Loshkova E.V., Prudnikova V.K., Rafikova Yu.S., Kim L.V., Lyulka T.S., Zhelev V.A., Saprina T.V., Bozhenko E.A., Kondratyeva E.I., Odinaeva N.D., Yankina G.N., Khavkin A.I. Necrotizing enterocolitis in preterm infants: state of the intestinal barrier, features of vitamin D metabolism and their regulation. Experimental and Clinical Gastroenterology. 2022;(6):61-75. (In Russ.) https://doi.org/10.31146/1682-8658-ecg-202-6-61-75